
Chapter 11

Approximation Algorithms

Following our encounter with NP-completeness and the idea of computational

intractability in general, we’ve been dealing with a fundamental question: How

should we design algorithms for problems where polynomial time is probably

an unattainable goal?

In this chapter, we focus on a new theme related to this question: approx-

imation algorithms, which run in polynomial time and find solutions that are

guaranteed to be close to optimal. There are two key words to notice in this

definition: close and guaranteed. We will not be seeking the optimal solution,

and as a result, it becomes feasible to aim for a polynomial running time. At

the same time, we will be interested in proving that our algorithms find so-

lutions that are guaranteed to be close to the optimum. There is something

inherently tricky in trying to do this: In order to prove an approximation guar-

antee, we need to compare our solution with—and hence reason about—an

optimal solution that is computationally very hard to find. This difficulty will

be a recurring issue in the analysis of the algorithms in this chapter.

We will consider four general techniques for designing approximation al-

gorithms. We start with greedy algorithms, analogous to the kind of algorithms

we developed in Chapter 4. These algorithms will be simple and fast, as in

Chapter 4, with the challenge being to find a greedy rule that leads to solu-

tions provably close to optimal. The second general approach we pursue is

the pricing method. This approach is motivated by an economic perspective;

we will consider a price one has to pay to enforce each constraint of the prob-

lem. For example, in a graph problem, we can think of the nodes or edges of

the graph sharing the cost of the solution in some equitable way. The pricing

method is often referred to as the primal-dual technique, a term inherited from

600 Chapter 11 Approximation Algorithms

the study of linear programming, which can also be used to motivate this ap-

proach. Our presentation of the pricing method here will not assume familiarity

with linear programming. We will introduce linear programming through our

third technique in this chapter, linear programming and rounding, in which

one exploits the relationship between the computational feasibility of linear

programming and the expressive power of its more difficult cousin, integer

programming. Finally, we will describe a technique that can lead to extremely

good approximations: using dynamic programming on a rounded version of

the input.

11.1 Greedy Algorithms and Bounds on the
Optimum: A Load Balancing Problem

As our first topic in this chapter, we consider a fundamental Load Balancing

Problem that arises when multiple servers need to process a set of jobs or

requests. We focus on a basic version of the problem in which all servers

are identical, and each can be used to serve any of the requests. This simple

problem is useful for illustrating some of the basic issues that one needs to

deal with in designing and analyzing approximation algorithms, particularly

the task of comparing an approximate solution with an optimum solution that

we cannot compute efficiently. Moreover, we’ll see that the general issue of

load balancing is a problem with many facets, and we’ll explore some of these

in later sections.

The Problem

We formulate the Load Balancing Problem as follows. We are given a set of m

machines M1, . . . , Mm and a set of n jobs; each job j has a processing time tj.

We seek to assign each job to one of the machines so that the loads placed on

all machines are as “balanced” as possible.

More concretely, in any assignment of jobs to machines, we can let A(i)

denote the set of jobs assigned to machine Mi; under this assignment, machine

Mi needs to work for a total time of

Ti =
∑

j∈A(i)

tj ,

and we declare this to be the load on machine Mi. We seek to minimize a

quantity known as the makespan; it is simply the maximum load on any

machine, T = maxi Ti. Although we will not prove this, the scheduling problem

of finding an assignment of minimum makespan is NP-hard.

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 601

Designing the Algorithm

We first consider a very simple greedy algorithm for the problem. The algorithm

makes one pass through the jobs in any order; when it comes to job j, it assigns

j to the machine whose load is smallest so far.

Greedy-Balance:

Start with no jobs assigned

Set Ti = 0 and A(i) = ∅ for all machines Mi

For j = 1, . . . , n

Let Mi be a machine that achieves the minimum mink Tk

Assign job j to machine Mi

Set A(i) ← A(i) ∪ {j}
Set Ti ← Ti + tj

EndFor

For example, Figure 11.1 shows the result of running this greedy algorithm

on a sequence of six jobs with sizes 2, 3, 4, 6, 2, 2; the resulting makespan is 8,

the “height” of the jobs on the first machine. Note that this is not the optimal

solution; had the jobs arrived in a different order, so that the algorithm saw

the sequence of sizes 6, 4, 3, 2, 2, 2, then it would have produced an allocation

with a makespan of 7.

Analyzing the Algorithm

Let T denote the makespan of the resulting assignment; we want to show that

T is not much larger than the minimum possible makespan T∗. Of course,

in trying to do this, we immediately encounter the basic problem mentioned

above: We need to compare our solution to the optimal value T∗, even though

we don’t know what this value is and have no hope of computing it. For the

6

2

2

2

3
4

M1 M2 M3

Figure 11.1 The result of running the greedy load balancing algorithm on three

machines with job sizes 2, 3, 4, 6, 2, 2.

602 Chapter 11 Approximation Algorithms

analysis, therefore, we will need a lower bound on the optimum—a quantity

with the guarantee that no matter how good the optimum is, it cannot be less

than this bound.

There are many possible lower bounds on the optimum. One idea for a

lower bound is based on considering the total processing time
∑

j tj. One of

the m machines must do at least a 1/m fraction of the total work, and so we

have the following.

(11.1) The optimal makespan is at least

T∗ ≥ 1

m

∑

j

tj.

There is a particular kind of case in which this lower bound is much too

weak to be useful. Suppose we have one job that is extremely long relative to

the sum of all processing times. In a sufficiently extreme version of this, the

optimal solution will place this job on a machine by itself, and it will be the

last one to finish. In such a case, our greedy algorithm would actually produce

the optimal solution; but the lower bound in (11.1) isn’t strong enough to

establish this.

This suggests the following additional lower bound on T∗.

(11.2) The optimal makespan is at least T∗ ≥ maxj tj.

Now we are ready to evaluate the assignment obtained by our greedy

algorithm.

(11.3) Algorithm Greedy-Balance produces an assignment of jobs to ma-

chines with makespan T ≤ 2T∗.

Proof. Here is the overall plan for the proof. In analyzing an approximation

algorithm, one compares the solution obtained to what one knows about the

optimum—in this case, our lower bounds (11.1) and (11.2). We consider a

machine Mi that attains the maximum load T in our assignment, and we ask:

What was the last job j to be placed on Mi? If tj is not too large relative to most

of the other jobs, then we are not too far above the lower bound (11.1). And,

if tj is a very large job, then we can use (11.2). Figure 11.2 shows the structure

of this argument.

Here is how we can make this precise. When we assigned job j to Mi, the

machine Mi had the smallest load of any machine; this is the key property

of our greedy algorithm. Its load just before this assignment was Ti − tj, and

since this was the smallest load at that moment, it follows that every machine

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 603

Mi

The contribution of

the last job alone is

at most the optimum.

Just before adding

the last job, the load

on Mi was at most

the optimum.

Figure 11.2 Accounting for the load on machine Mi in two parts: the last job to be

added, and all the others.

had load at least Ti − tj. Thus, adding up the loads of all machines, we have∑
k Tk ≥ m(Ti − tj), or equivalently,

Ti − tj ≤
1

m

∑

k

Tk.

But the value
∑

k Tk is just the total load of all jobs
∑

j tj (since every job is

assigned to exactly one machine), and so the quantity on the right-hand side

of this inequality is exactly our lower bound on the optimal value, from (11.1).

Thus

Ti − tj ≤ T∗.

Now we account for the remaining part of the load on Mi, which is just the

final job j. Here we simply use the other lower bound we have, (11.2), which

says that tj ≤ T∗. Adding up these two inequalities, we see that

Ti = (Ti − tj) + tj ≤ 2T∗.

Since our makespan T is equal to Ti, this is the result we want.

It is not hard to give an example in which the solution is indeed close

to a factor of 2 away from optimal. Suppose we have m machines and

n = m(m − 1) + 1 jobs. The first m(m − 1) = n − 1 jobs each require time tj = 1.

The last job is much larger; it requires time tn = m. What does our greedy

algorithm do with this sequence of jobs? It evenly balances the first n − 1 jobs,

and then has to add the giant job n to one of them; the resulting makespan is

T = 2m − 1.

604 Chapter 11 Approximation Algorithms

M1

The greedy

algorithm was

doing well

until the last

job arrived.

M2 M3 M4

Approximate solution

via greedy algorithm:

M1 M2 M3 M4

Optimal solution:

Figure 11.3 A bad example for the greedy balancing algorithm with m = 4.

What does the optimal solution look like in this example? It assigns the

large job to one of the machines, say, M1, and evenly spreads the remaining

jobs over the other m − 1 machines. This results in a makespan of m. Thus

the ratio between the greedy algorithm’s solution and the optimal solution is

(2m − 1)/m = 2 − 1/m, which is close to a factor of 2 when m is large.

See Figure 11.3 for a picture of this with m = 4; one has to admire the

perversity of the construction, which misleads the greedy algorithm into

perfectly balancing everything, only to mess everything up with the final giant

item.

In fact, with a little care, one can improve the analysis in (11.3) to show

that the greedy algorithm with m machines is within exactly this factor of

2 − 1/m on every instance; the example above is really as bad as possible.

Extensions: An Improved Approximation Algorithm

Now let’s think about how we might develop a better approximation

algorithm—in other words, one for which we are always guaranteed to be

within a factor strictly smaller than 2 away from the optimum. To do this, it

helps to think about the worst cases for our current approximation algorithm.

Our earlier bad example had the following flavor: We spread everything out

very evenly across the machines, and then one last, giant, unfortunate job

arrived. Intuitively, it looks like it would help to get the largest jobs arranged

nicely first, with the idea that later, small jobs can only do so much damage.

And in fact, this idea does lead to a measurable improvement.

Thus we now analyze the variant of the greedy algorithm that first sorts

the jobs in decreasing order of processing time and then proceeds as before.

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 605

We will prove that the resulting assignment has a makespan that is at most 1.5

times the optimum.

Sorted-Balance:

Start with no jobs assigned

Set Ti = 0 and A(i) = ∅ for all machines Mi

Sort jobs in decreasing order of processing times tj

Assume that t1 ≥ t2 ≥ . . . ≥ tn

For j = 1, . . . , n

Let Mi be the machine that achieves the minimum mink Tk

Assign job j to machine Mi

Set A(i) ← A(i) ∪ {j}
Set Ti ← Ti + tj

EndFor

The improvement comes from the following observation. If we have fewer

than m jobs, then the greedy solution will clearly be optimal, since it puts each

job on its own machine. And if we have more than m jobs, then we can use

the following further lower bound on the optimum.

(11.4) If there are more than m jobs, then T∗ ≥ 2tm+1.

Proof. Consider only the first m + 1 jobs in the sorted order. They each take

at least tm+1 time. There are m + 1 jobs and only m machines, so there must

be a machine that gets assigned two of these jobs. This machine will have

processing time at least 2tm+1.

(11.5) Algorithm Sorted-Balance produces an assignment of jobs to ma-

chines with makespan T ≤ 3
2T∗.

Proof. The proof will be very similar to the analysis of the previous algorithm.

As before, we will consider a machine Mi that has the maximum load. If Mi

only holds a single job, then the schedule is optimal.

So let’s assume that machine Mi has at least two jobs, and let tj be the

last job assigned to the machine. Note that j ≥ m + 1, since the algorithm will

assign the first m jobs to m distinct machines. Thus tj ≤ tm+1 ≤ 1
2T∗, where

the second inequality is (11.4).

We now proceed as in the proof of (11.3), with the following single change.

At the end of that proof, we had inequalities Ti − tj ≤ T∗ and tj ≤ T∗, and we

added them up to get the factor of 2. But in our case here, the second of these

606 Chapter 11 Approximation Algorithms

inequalities is, in fact, tj ≤ 1
2T∗; so adding the two inequalities gives us the

bound

Ti ≤ 3

2
T∗.

11.2 The Center Selection Problem
Like the problem in the previous section, the Center Selection Problem, which

we consider here, also relates to the general task of allocating work across

multiple servers. The issue at the heart of Center Selection is where best to

place the servers; in order to keep the formulation clean and simple, we will not

incorporate the notion of load balancing into the problem. The Center Selection

Problem also provides an example of a case in which the most natural greedy

algorithm can result in an arbitrarily bad solution, but a slightly different

greedy method is guaranteed to always result in a near-optimal solution.

The Problem

Consider the following scenario. We have a set S of n sites—say, n little towns

in upstate New York. We want to select k centers for building large shopping

malls. We expect that people in each of these n towns will shop at one of the

malls, and so we want to select the sites of the k malls to be central.

Let us start by defining the input to our problem more formally. We are

given an integer k, a set S of n sites (corresponding to the towns), and a

distance function. When we consider instances where the sites are points

in the plane, the distance function will be the standard Euclidean distance

between points, and any point in the plane is an option for placing a center.

The algorithm we develop, however, can be applied to more general notions of

distance. In applications, distance sometimes means straight-line distance, but

can also mean the travel time from point s to point z, or the driving distance

(i.e., distance along roads), or even the cost of traveling. We will allow any

distance function that satisfies the following natural properties.

. dist(s, s) = 0 for all s ∈ S

. the distance is symmetric: dist(s, z) = dist(z, s) for all sites s, z ∈ S

. the triangle inequality: dist(s, z) + dist(z, h) ≥ dist(s, h)

The first and third of these properties tend to be satisfied by essentially all

natural notions of distance. Although there are applications with asymmetric

distances, most cases of interest also satisfy the second property. Our greedy al-

gorithm will apply to any distance function that satisfies these three properties,

and it will depend on all three.

11.2 The Center Selection Problem 607

Next we have to clarify what we mean by the goal of wanting the centers

to be “central.” Let C be a set of centers. We assume that the people in a given

town will shop at the closest mall. This suggests we define the distance of a

site s to the centers as dist(s, C) = minc∈C dist(s, c). We say that C forms an r-

cover if each site is within distance at most r from one of the centers—that is,

if dist(s, C) ≤ r for all sites s ∈ S. The minimum r for which C is an r-cover will

be called the covering radius of C and will be denoted by r(C). In other words,

the covering radius of a set of centers C is the farthest that anyone needs to

travel to get to his or her nearest center. Our goal will be to select a set C of k

centers for which r(C) is as small as possible.

Designing and Analyzing the Algorithm

Difficulties with a Simple Greedy Algorithm We now discuss greedy algo-

rithms for this problem. As before, the meaning of “greedy” here is necessarily

a little fuzzy; essentially, we consider algorithms that select sites one by one in

a myopic fashion—that is, choosing each without explicitly considering where

the remaining sites will go.

Probably the simplest greedy algorithm would work as follows. It would

put the first center at the best possible location for a single center, then keep

adding centers so as to reduce the covering radius, each time, by as much as

possible. It turns out that this approach is a bit too simplistic to be effective:

there are cases where it can lead to very bad solutions.

To see that this simple greedy approach can be really bad, consider an

example with only two sites s and z, and k = 2. Assume that s and z are

located in the plane, with distance equal to the standard Euclidean distance

in the plane, and that any point in the plane is an option for placing a center.

Let d be the distance between s and z. Then the best location for a single

center c1 is halfway between s and z, and the covering radius of this one

center is r({c1}) = d/2. The greedy algorithm would start with c1 as the first

center. No matter where we add a second center, at least one of s or z will have

the center c1 as closest, and so the covering radius of the set of two centers

will still be d/2. Note that the optimum solution with k = 2 is to select s and

z themselves as the centers. This will lead to a covering radius of 0. A more

complex example illustrating the same problem can be obtained by having two

dense “clusters” of sites, one around s and one around z. Here our proposed

greedy algorithm would start by opening a center halfway between the clusters,

while the optimum solution would open a separate center for each cluster.

Knowing the Optimal Radius Helps In searching for an improved algorithm,

we begin with a useful thought experiment. Suppose for a minute that someone

told us what the optimum radius r is. Would this information help? That is,

suppose we know that there is a set of k centers C∗ with radius r(C∗) ≤ r, and

608 Chapter 11 Approximation Algorithms

Center c* used in optimal solution

Site s covered by c*

Circle of twice the radius at s

covers everything that c* covered.

Figure 11.4 Everything covered at radius r by c∗ is also covered at radius 2r by s.

our job is to find some set of k centers C whose covering radius is not much

more than r. It turns out that finding a set of k centers with covering radius at

most 2r can be done relatively easily.

Here is the idea: We can use the existence of this solution C∗ in our

algorithm even though we do not know what C∗ is. Consider any site s ∈ S.

There must be a center c∗ ∈ C∗ that covers site s, and this center c∗ is at

distance at most r from s. Now our idea would be to take this site s as a

center in our solution instead of c∗, as we have no idea what c∗ is. We would

like to make s cover all the sites that c∗ covers in the unknown solution C∗.
This is accomplished by expanding the radius from r to 2r. All the sites that

were at distance at most r from center c∗ are at distance at most 2r from s

(by the triangle inequality). See Figure 11.4 for a simple illustration of this

argument.

S′ will represent the sites that still need to be covered

Initialize S′ = S

Let C = ∅
While S′ �= ∅
Select any site s ∈ S′ and add s to C

Delete all sites from S′ that are at distance at most 2r from s

EndWhile

If |C| ≤ k then

Return C as the selected set of sites

Else

11.2 The Center Selection Problem 609

Claim (correctly) that there is no set of k centers with

covering radius at most r

EndIf

Clearly, if this algorithm returns a set of at most k centers, then we have

what we wanted.

(11.6) Any set of centers C returned by the algorithm has covering radius

r(C) ≤ 2r.

Next we argue that if the algorithm fails to return a set of centers, then its

conclusion that no set can have covering radius at most r is indeed correct.

(11.7) Suppose the algorithm selects more than k centers. Then, for any set

C∗ of size at most k, the covering radius is r(C∗) > r.

Proof. Assume the opposite, that there is a set C∗ of at most k centers with

covering radius r(C∗) ≤ r. Each center c ∈ C selected by the greedy algorithm

is one of the original sites in S, and the set C∗ has covering radius at most r,

so there must be a center c∗ ∈ C∗ that is at most a distance of r from c—that

is, dist(c, c∗) ≤ r. Let us say that such a center c∗ is close to c. We want to

claim that no center c∗ in the optimal solution C∗ can be close to two different

centers in the greedy solution C. If we can do this, we are done: each center

c ∈ C has a close optimal center c∗ ∈ C∗, and each of these close optimal centers

is distinct. This will imply that |C∗| ≥ |C|, and since |C| > k, this will contradict

our assumption that C∗ contains at most k centers.

So we just need to show that no optimal center c∗ ∈ C can be close to each

of two centers c, c′ ∈ C. The reason for this is pictured in Figure 11.5. Each pair

of centers c, c′ ∈ C is separated by a distance of more than 2r, so if c∗ were

within a distance of at most r from each, then this would violate the triangle

inequality, since dist(c, c∗) + dist(c∗, c′) ≥ dist(c, c′) > 2r.

Eliminating the Assumption That We Know the Optimal Radius Now we

return to the original question: How do we select a good set of k centers without

knowing what the optimal covering radius might be?

It is worth discussing two different answers to this question. First, there are

many cases in the design of approximation algorithms where it is conceptually

useful to assume that you know the value achieved by an optimal solution.

In such situations, you can often start with an algorithm designed under this

assumption and convert it into one that achieves a comparable performance

guarantee by simply trying out a range of “guesses” as to what the optimal

610 Chapter 11 Approximation Algorithms

= Centers used by optimal solution

Figure 11.5 The crucial step in the analysis of the greedy algorithm that knows the

optimal radius r. No center used by the optimal solution can lie in two different circles,

so there must be at least as many optimal centers as there are centers chosen by the

greedy algorithm.

value might be. Over the course of the algorithm, this sequence of guesses gets

more and more accurate, until an approximate solution is reached.

For the Center Selection Problem, this could work as follows. We can start

with some very weak initial guesses about the radius of the optimal solution:

We know it is greater than 0, and it is at most the maximum distance rmax

between any two sites. So we could begin by splitting the difference between

these two and running the greedy algorithm we developed above with this

value of r = rmax/2. One of two things will happen, according to the design of

the algorithm: Either we find a set of k centers with covering radius at most

2r, or we conclude that there is no solution with covering radius at most r. In

the first case, we can afford to lower our guess on the radius of the optimal

solution; in the second case, we need to raise it. This gives us the ability to

perform a kind of binary search on the radius: in general, we will iteratively

maintain values r0 < r1 so that we know the optimal radius is greater than r0,

but we have a solution of radius at most 2r1. From these values, we can run

the above algorithm with radius r = (r0 + r1)/2; we will either conclude that

the optimal solution has radius greater than r > r0, or obtain a solution with

radius at most 2r = (r0 + r1) < 2r1. Either way, we will have sharpened our

estimates on one side or the other, just as binary search is supposed to do.

We can stop when we have estimates r0 and r1 that are close to each other;

at this point, our solution of radius 2r1 is close to being a 2-approximation to

the optimal radius, since we know the optimal radius is greater than r0 (and

hence close to r1).

11.2 The Center Selection Problem 611

A Greedy Algorithm That Works For the specific case of the Center Selection

Problem, there is a surprising way to get around the assumption of knowing the

radius, without resorting to the general technique described earlier. It turns out

we can run essentially the same greedy algorithm developed earlier without

knowing anything about the value of r.

The earlier greedy algorithm, armed with knowledge of r, repeatedly

selects one of the original sites s as the next center, making sure that it is

at least 2r away from all previously selected sites. To achieve essentially the

same effect without knowing r, we can simply select the site s that is farthest

away from all previously selected centers: If there is any site at least 2r away

from all previously chosen centers, then this farthest site s must be one of

them. Here is the resulting algorithm.

Assume k ≤ |S| (else define C = S)

Select any site s and let C = {s}
While |C| < k

Select a site s ∈ S that maximizes dist(s, C)

Add site s to C

EndWhile

Return C as the selected set of sites

(11.8) This greedy algorithm returns a set C of k points such that r(C) ≤
2r(C∗), where C∗ is an optimal set of k points.

Proof. Let r = r(C∗) denote the minimum possible radius of a set of k centers.

For the proof, we assume that we obtain a set of k centers C with r(C) > 2r,

and from this we derive a contradiction.

So let s be a site that is more than 2r away from every center in C. Consider

some intermediate iteration in the execution of the algorithm, where we have

thus far selected a set of centers C ′. Suppose we are adding the center c′ in this

iteration. We claim that c′ is at least 2r away from all sites in C ′. This follows as

site s is more than 2r away from all sites in the larger set C, and we select a site

c that is the farthest site from all previously selected centers. More formally,

we have the following chain of inequalities:

dist(c′, C ′) ≥ dist(s, C ′) ≥ dist(s, C) > 2r.

It follows that our greedy algorithm is a correct implementation of the

first k iterations of the while loop of the previous algorithm, which knew the

optimal radius r: In each iteration, we are adding a center at distance more

than 2r from all previously selected centers. But the previous algorithm would

612 Chapter 11 Approximation Algorithms

have S′ �= ∅ after selecting k centers, as it would have s ∈ S′, and so it would

go on and select more than k centers and eventually conclude that k centers

cannot have covering radius at most r. This contradicts our choice of r, and

the contradiction proves that r(C) ≤ 2r.

Note the surprising fact that our final greedy 2-approximation algorithm

is a very simple modification of the first greedy algorithm that did not work.

Perhaps the most important change is simply that our algorithm always selects

sites as centers (i.e., every mall will be built in one of the little towns and not

halfway between two of them).

11.3 Set Cover: A General Greedy Heuristic
In this section we will consider a very general problem that we also encoun-

tered in Chapter 8, the Set Cover Problem. A number of important algorithmic

problems can be formulated as special cases of Set Cover, and hence an ap-

proximation algorithm for this problem will be widely applicable. We will see

that it is possible to design a greedy algorithm here that produces solutions

with a guaranteed approximation factor relative to the optimum, although this

factor will be weaker than what we saw for the problems in Sections 11.1 and

11.2.

While the greedy algorithm we design for Set Cover will be very simple,

the analysis will be more complex than what we encountered in the previous

two sections. There we were able to get by with very simple bounds on

the (unknown) optimum solution, while here the task of comparing to the

optimum is more difficult, and we will need to use more sophisticated bounds.

This aspect of the method can be viewed as our first example of the pricing

method, which we will explore more fully in the next two sections.

The Problem

Recall from our discussion of NP-completeness that the Set Cover Problem is

based on a set U of n elements and a list S1, . . . , Sm of subsets of U; we say

that a set cover is a collection of these sets whose union is equal to all of U.

In the version of the problem we consider here, each set Si has an

associated weight wi ≥ 0. The goal is to find a set cover C so that the total

weight

∑

Si∈C

wi

is minimized. Note that this problem is at least as hard as the decision version

of Set Cover we encountered earlier; if we set all wi = 1, then the minimum

11.3 Set Cover: A General Greedy Heuristic 613

weight of a set cover is at most k if and only if there is a collection of at most

k sets that covers U.

Designing the Algorithm

We will develop and analyze a greedy algorithm for this problem. The algo-

rithm will have the property that it builds the cover one set at a time; to choose

its next set, it looks for one that seems to make the most progress toward the

goal. What is a natural way to define “progress” in this setting? Desirable

sets have two properties: They have small weight wi, and they cover lots of

elements. Neither of these properties alone, however, would be enough for

designing a good approximation algorithm. Instead, it is natural to combine

these two criteria into the single measure wi/|Si|—that is, by selecting Si, we

cover |Si| elements at a cost of wi, and so this ratio gives the “cost per element

covered,” a very reasonable thing to use as a guide.

Of course, once some sets have already been selected, we are only con-

cerned with how we are doing on the elements still left uncovered. So we will

maintain the set R of remaining uncovered elements and choose the set Si that

minimizes wi/|Si ∩ R|.

Greedy-Set-Cover:

Start with R = U and no sets selected

While R �= ∅
Select set Si that minimizes wi/|Si ∩ R|
Delete set Si from R

EndWhile

Return the selected sets

As an example of the behavior of this algorithm, consider what it would do

on the instance in Figure 11.6. It would first choose the set containing the four

nodes at the bottom (since this has the best weight-to-coverage ratio, 1/4). It

then chooses the set containing the two nodes in the second row, and finally

it chooses the sets containing the two individual nodes at the top. It thereby

chooses a collection of sets of total weight 4. Because it myopically chooses

the best option each time, this algorithm misses the fact that there’s a way to

cover everything using a weight of just 2 + 2ε, by selecting the two sets that

each cover a full column.

Analyzing the Algorithm

The sets selected by the algorithm clearly form a set cover. The question we

want to address is: How much larger is the weight of this set cover than the

weight w∗ of an optimal set cover?

614 Chapter 11 Approximation Algorithms

Two sets can be used to

cover everything, but the

greedy algorithm doesn’t

find them.

1 1

1

1

1 + ε 1 + ε

Figure 11.6 An instance of the Set Cover Problem where the weights of sets are either

1 or 1+ ε for some small ε > 0. The greedy algorithm chooses sets of total weight 4,

rather than the optimal solution of weight 2 + 2ε.

As in Sections 11.1 and 11.2, our analysis will require a good lower bound

on this optimum. In the case of the Load Balancing Problem, we used lower

bounds that emerged naturally from the statement of the problem: the average

load, and the maximum job size. The Set Cover Problem will turn out to be

more subtle; “simple” lower bounds are not very useful, and instead we will

use a lower bound that the greedy algorithm implicitly constructs as a by-

product.

Recall the intuitive meaning of the ratio wi/|Si ∩ R| used by the algorithm; it

is the “cost paid” for covering each new element. Let’s record this cost paid for

11.3 Set Cover: A General Greedy Heuristic 615

element s in the quantity cs. We add the following line to the code immediately

after selecting the set Si.

Define cs = wi/|Si ∩ R| for all s ∈ Si ∩ R

The values cs do not affect the behavior of the algorithm at all; we view

them as a bookkeeping device to help in our comparison with the optimum

w∗. As each set Si is selected, its weight is distributed over the costs cs of the

elements that are newly covered. Thus these costs completely account for the

total weight of the set cover, and so we have

(11.9) If C is the set cover obtained by Greedy-Set-Cover, then
∑

Si∈C
wi =∑

s∈U cs.

The key to the analysis is to ask how much total cost any single set Sk

can account for—in other words, to give a bound on
∑

s∈Sk
cs relative to the

weight wk of the set, even for sets not selected by the greedy algorithm. Giving

an upper bound on the ratio
∑

s∈Sk
cs

wk

that holds for every set says, in effect, “To cover a lot of cost, you must use a lot

of weight.” We know that the optimum solution must cover the full cost
∑

s∈U cs

via the sets it selects; so this type of bound will establish that it needs to use

at least a certain amount of weight. This is a lower bound on the optimum,

just as we need for the analysis.

Our analysis will use the harmonic function

H(n) =
n∑

i=1

1

i
.

To understand its asymptotic size as a function of n, we can interpret it as a

sum approximating the area under the curve y = 1/x. Figure 11.7 shows how

it is naturally bounded above by 1+
∫ n

1
1
x dx = 1+ ln n, and bounded below

by
∫ n+1

1
1
x dx = ln(n + 1). Thus we see that H(n) = �(ln n).

Here is the key to establishing a bound on the performance of the algo-

rithm.

(11.10) For every set Sk, the sum
∑

s∈Sk
cs is at most H(|Sk|) · wk.

Proof. To simplify the notation, we will assume that the elements of Sk are

the first d = |Sk| elements of the set U; that is, Sk = {s1, . . . , sd}. Furthermore,

let us assume that these elements are labeled in the order in which they are

assigned a cost csj
by the greedy algorithm (with ties broken arbitrarily). There

616 Chapter 11 Approximation Algorithms

1 2 3 4

1

1/2
1/3

y = 1/x

Figure 11.7 Upper and lower bounds for the Harmonic Function H(n).

is no loss of generality in doing this, since it simply involves a renaming of the

elements in U.

Now consider the iteration in which element sj is covered by the greedy

algorithm, for some j ≤ d. At the start of this iteration, sj , sj+1, . . . , sd ∈ R by

our labeling of the elements. This implies that |Sk ∩ R| is at least d − j + 1, and

so the average cost of the set Sk is at most

wk

|Sk ∩ R| ≤ wk

d − j + 1
.

Note that this is not necessarily an equality, since sj may be covered in the

same iteration as some of the other elements sj′ for j′ < j. In this iteration, the

greedy algorithm selected a set Si of minimum average cost; so this set Si has

average cost at most that of Sk. It is the average cost of Si that gets assigned

to sj, and so we have

csj
= wi

|Si ∩ R| ≤ wk

|Sk ∩ R| ≤ wk

d − j + 1
.

We now simply add up these inequalities for all elements s ∈ Sk:

∑

s∈Sk

cs =
d∑

j=1

csj
≤

d∑

j=1

wk

d − j + 1
= wk

d
+ wk

d − 1
+ . . . + wk

1
= H(d) · wk.

We now complete our plan to use the bound in (11.10) for comparing the

greedy algorithm’s set cover to the optimal one. Letting d∗ = maxi |Si| denote

the maximum size of any set, we have the following approximation result.

(11.11) The set cover C selected by Greedy-Set-Cover has weight at most

H(d∗) times the optimal weight w∗.

11.3 Set Cover: A General Greedy Heuristic 617

Proof. Let C∗ denote the optimum set cover, so that w∗ = ∑
Si∈C∗ wi. For each

of the sets in C∗, (11.10) implies

wi ≥ 1

H(d∗)

∑

s∈Si

cs.

Because these sets form a set cover, we have

∑

Si∈C∗

∑

s∈Si

cs ≥
∑

s∈U

cs.

Combining these with (11.9), we obtain the desired bound:

w∗ =
∑

Si∈C∗
wi ≥

∑

Si∈C∗

1

H(d∗)

∑

s∈Si

cs ≥ 1

H(d∗)

∑

s∈U

cs = 1

H(d∗)

∑

Si∈C

wi.

Asymptotically, then, the bound in (11.11) says that the greedy algorithm

finds a solution within a factor O(log d∗) of optimal. Since the maximum set

size d∗ can be a constant fraction of the total number of elements n, this is a

worst-case upper bound of O(log n). However, expressing the bound in terms

of d∗ shows us that we’re doing much better if the largest set is small.

It’s interesting to note that this bound is essentially the best one possible,

since there are instances where the greedy algorithm can do this badly. To

see how such instances arise, consider again the example in Figure 11.6. Now

suppose we generalize this so that the underlying set of elements U consists

of two tall columns with n/2 elements each. There are still two sets, each of

weight 1+ ε, for some small ε > 0, that cover the columns separately. We also

create �(log n) sets that generalize the structure of the other sets in the figure:

there is a set that covers the bottommost n/2 nodes, another that covers the

next n/4, another that covers the next n/8, and so forth. Each of these sets

will have weight 1.

Now the greedy algorithm will choose the sets of size n/2, n/4, n/8, . . . ,

in the process producing a solution of weight �(log n). Choosing the two

sets that cover the columns separately, on the other hand, yields the optimal

solution, with weight 2 + 2ε. Through more complicated constructions, one

can strengthen this to produce instances where the greedy algorithm incurs

a weight that is very close to H(n) times the optimal weight. And in fact, by

much more complicated means, it has been shown that no polynomial-time

approximation algorithm can achieve an approximation bound much better

than H(n) times optimal, unless P = NP.

618 Chapter 11 Approximation Algorithms

11.4 The Pricing Method: Vertex Cover
We now turn to our second general technique for designing approximation

algorithms, the pricing method. We will introduce this technique by consid-

ering a version of the Vertex Cover Problem. As we saw in Chapter 8, Vertex

Cover is in fact a special case of Set Cover, and so we will begin this section

by considering the extent to which one can use reductions in the design of

approximation algorithms. Following this, we will develop an algorithm with

a better approximation guarantee than the general bound that we obtained for

Set Cover in the previous section.

The Problem

Recall that a vertex cover in a graph G = (V , E) is a set S ⊆ V so that each

edge has at least one end in S. In the version of the problem we consider here,

each vertex i ∈ V has a weight wi ≥ 0, with the weight of a set S of vertices

denoted w(S) = ∑
i∈S wi. We would like to find a vertex cover S for which w(S)

is minimum. When all weights are equal to 1, deciding if there is a vertex cover

of weight at most k is the standard decision version of Vertex Cover.

Approximations via Reductions? Before we work on developing an algo-

rithm, we pause to discuss an interesting issue that arises: Vertex Cover is

easily reducible to Set Cover, and we have just seen an approximation algo-

rithm for Set Cover. What does this imply about the approximability of Vertex

Cover? A discussion of this question brings out some of the subtle ways in

which approximation results interact with polynomial-time reductions.

First consider the special case in which all weights are equal to 1—that

is, we are looking for a vertex cover of minimum size. We will call this the

unweighted case. Recall that we showed Set Cover to be NP-complete using a

reduction from the decision version of unweighted Vertex Cover. That is,

Vertex Cover ≤P Set Cover

This reduction says, “If we had a polynomial-time algorithm that solves the

Set Cover Problem, then we could use this algorithm to solve the Vertex Cover

Problem in polynomial time.” We now have a polynomial-time algorithm for

the Set Cover Problem that approximates the solution. Does this imply that we

can use it to formulate an approximation algorithm for Vertex Cover?

(11.12) One can use the Set Cover approximation algorithm to give an H(d)-

approximation algorithm for the weighted Vertex Cover Problem, where d is the

maximum degree of the graph.

Proof. The proof is based on the reduction that showed Vertex Cover ≤P Set

Cover, which also extends to the weighted case. Consider an instance of the

weighted Vertex Cover Problem, specified by a graph G = (V , E). We define an

11.4 The Pricing Method: Vertex Cover 619

instance of Set Cover as follows. The underlying set U is equal to E. For each

node i, we define a set Si consisting of all edges incident to node i and give

this set weight wi. Collections of sets that cover U now correspond precisely to

vertex covers. Note that the maximum size of any Si is precisely the maximum

degree d.

Hence we can use the approximation algorithm for Set Cover to find a

vertex cover whose weight is within a factor of H(d) of minimum.

This H(d)-approximation is quite good when d is small; but it gets worse

as d gets larger, approaching a bound that is logarithmic in the number of

vertices. In the following, we will develop a stronger approximation algorithm

that comes within a factor of 2 of optimal.

Before turning to the 2-approximation algorithm, we make the following

further observation: One has to be very careful when trying to use reductions

for designing approximation algorithms. It worked in (11.12), but we made

sure to go through an argument for why it worked; it is not the case that every

polynomial-time reduction leads to a comparable implication for approxima-

tion algorithms.

Here is a cautionary example. We used Independent Set to prove that the

Vertex Cover Problem is NP-complete. Specifically, we proved

Independent Set ≤P Vertex Cover,

which states that “if we had a polynomial-time algorithm that solves the Vertex

Cover Problem, then we could use this algorithm to solve the Independent

Set Problem in polynomial time.” Can we use an approximation algorithm for

the minimum-size vertex cover to design a comparably good approximation

algorithm for the maximum-size independent set?

The answer is no. Recall that a set I of vertices is independent if and

only if its complement S = V − I is a vertex cover. Given a minimum-size

vertex cover S∗, we obtain a maximum-size independent set by taking the

complement I∗ = V − S. Now suppose we use an approximation algorithm for

the Vertex Cover Problem to get an approximately minimum vertex cover S.

The complement I = V − S is indeed an independent set—there’s no problem

there. The trouble is when we try to determine our approximation factor for

the Independent Set Problem; I can be very far from optimal. Suppose, for

example, that the optimal vertex cover S∗ and the optimal independent set I∗

both have size |V|/2. If we invoke a 2-approximation algorithm for the Vertex

Cover Problem, we may perfectly well get back the set S = V. But, in this case,

our “approximately maximum independent set” I = V − S has no elements.

620 Chapter 11 Approximation Algorithms

Designing the Algorithm: The Pricing Method

Even though (11.12) gave us an approximation algorithm with a provable

guarantee, we will be able to do better. Our approach forms a nice illustration

of the pricing method for designing approximation algorithms.

The Pricing Method to Minimize Cost The pricing method (also known as

the primal-dual method) is motivated by an economic perspective. For the

case of the Vertex Cover Problem, we will think of the weights on the nodes

as costs, and we will think of each edge as having to pay for its “share” of

the cost of the vertex cover we find. We have actually just seen an analysis of

this sort, in the greedy algorithm for Set Cover from Section 11.3; it too can be

thought of as a pricing algorithm. The greedy algorithm for Set Cover defined

values cs, the cost the algorithm paid for covering element s. We can think of

cs as the element s’s “share” of the cost. Statement (11.9) shows that it is very

natural to think of the values cs as cost-shares, as the sum of the cost-shares∑
s∈U cs is the cost of the set cover C returned by the algorithm,

∑
Si∈C

wi. The

key to proving that the algorithm is an H(d∗)-approximation algorithm was a

certain approximate “fairness” property for the cost-shares: (11.10) shows that

the elements in a set Sk are charged by at most an H(|Sk|) factor more than

the cost of covering them by the set Sk.

In this section, we’ll develop the pricing technique through another ap-

plication, Vertex Cover. Again, we will think of the weight wi of the vertex i

as the cost for using i in the cover. We will think of each edge e as a separate

“agent” who is willing to “pay” something to the node that covers it. The al-

gorithm will not only find a vertex cover S, but also determine prices pe ≥ 0

for each edge e ∈ E, so that if each edge e ∈ E pays the price pe, this will in

total approximately cover the cost of S. These prices pe are the analogues of

cs from the Set Cover Algorithm.

Thinking of the edges as agents suggests some natural fairness rules for

prices, analogous to the property proved by (11.10). First of all, selecting a

vertex i covers all edges incident to i, so it would be “unfair” to charge these

incident edges in total more than the cost of vertex i. We call prices pe fair if,

for each vertex i, the edges adjacent to i do not have to pay more than the

cost of the vertex:
∑

e=(i, j) pe ≤ wi. Note that the property proved by (11.10)

for Set Cover is an approximate fairness condition, while in the Vertex Cover

algorithm we’ll actually use the exact fairness defined here. A useful fact about

fair prices is that they provide a lower bound on the cost of any solution.

(11.13) For any vertex cover S∗, and any nonnegative and fair prices pe, we

have
∑

e∈E pe ≤ w(S∗).

11.4 The Pricing Method: Vertex Cover 621

Proof. Consider a vertex cover S∗. By the definition of fairness, we have∑
e=(i, j) pe ≤ wi for all nodes i ∈ S∗. Adding these inequalities over all nodes

in S∗, we get
∑

i∈S∗

∑

e=(i, j)

pe ≤
∑

i∈S∗
wi = w(S∗).

Now the expression on the left-hand side is a sum of terms, each of which

is some edge price pe. Since S∗ is a vertex cover, each edge e contributes at

least one term pe to the left-hand side. It may contribute more than one copy

of pe to this sum, since it may be covered from both ends by S∗; but the prices

are nonnegative, and so the sum on the left-hand side is at least as large as

the sum of all prices pe. That is,
∑

e∈E

pe ≤
∑

i∈S∗

∑

e=(i, j)

pe.

Combining this with the previous inequality, we get
∑

e∈E

pe ≤ w(S∗),

as desired.

The Algorithm The goal of the approximation algorithm will be to find a

vertex cover and to set prices at the same time. We can think of the algorithm

as being greedy in how it sets the prices. It then uses these prices to drive the

way it selects nodes for the vertex cover.

We say that a node i is tight (or “paid for”) if
∑

e=(i, j) pe = wi.

Vertex-Cover-Approx(G, w):

Set pe = 0 for all e ∈ E

While there is an edge e = (i, j) such that neither i nor j is tight

Select such an edge e

Increase pe without violating fairness

EndWhile

Let S be the set of all tight nodes

Return S

For example, consider the execution of this algorithm on the instance in

Figure 11.8. Initially, no node is tight; the algorithm decides to select the edge

(a, b). It can raise the price paid by (a, b) up to 3, at which point the node b

becomes tight and it stops. The algorithm then selects the edge (a, d). It can

only raise this price up to 1, since at this point the node a becomes tight (due

to the fact that the weight of a is 4, and it is already incident to an edge that is

622 Chapter 11 Approximation Algorithms

4

a

5 33

00

00

0 0
03

00

4

5 33

4

5 33

a

a: tight a: tight

b: tight

b: tightb: tight

c dc db

c d c d: tight

4

5 33

(a) (b)

(c) (d)

0
13

20

0
13

00

Figure 11.8 Parts (a)–(d) depict the steps in an execution of the pricing algorithm on an

instance of the weighted Vertex Cover Problem. The numbers inside the nodes indicate

their weights; the numbers annotating the edges indicate the prices they pay as the

algorithm proceeds.

paying 3). Finally, the algorithm selects the edge (c, d). It can raise the price

paid by (c, d) up to 2, at which point d becomes tight. We now have a situation

where all edges have at least one tight end, so the algorithm terminates. The

tight nodes are a, b, and d; so this is the resulting vertex cover. (Note that this

is not the minimum-weight vertex cover; that would be obtained by selecting

a and c.)

Analyzing the Algorithm

At first sight, one may have the sense that the vertex cover S is fully paid for

by the prices: all nodes in S are tight, and hence the edges adjacent to the

node i in S can pay for the cost of i. But the point is that an edge e can be

adjacent to more than one node in the vertex cover (i.e., if both ends of e are

in the vertex cover), and hence e may have to pay for more than one node.

This is the case, for example, with the edges (a, b) and (a, d) at the end of the

execution in Figure 11.8.

However, notice that if we take edges for which both ends happened to

show up in the vertex cover, and we charge them their price twice, then we’re

exactly paying for the vertex cover. (In the example, the cost of the vertex

11.4 The Pricing Method: Vertex Cover 623

cover is the cost of nodes a, b, and d, which is 10. We can account for this cost

exactly by charging (a, b) and (a, d) twice, and (c, d) once.) Now, it’s true that

this is unfair to some edges, but the amount of unfairness can be bounded:

Each edge gets charged its price at most two times (once for each end).

We now make this argument precise, as follows.

(11.14) The set S and prices p returned by the algorithm satisfy the inequality

w(S) ≤ 2
∑

e∈E pe.

Proof. All nodes in S are tight, so we have
∑

e=(i, j) pe = wi for all i ∈ S. Adding

over all nodes in S we get

w(S) =
∑

i∈S

wi =
∑

i∈S

∑

e=(i, j)

pe.

An edge e = (i, j) can be included in the sum on the right-hand side at most

twice (if both i and j are in S), and so we get

w(S) =
∑

i∈S

∑

e=(i, j)

pe ≤ 2
∑

e∈E

pe ,

as claimed.

Finally, this factor of 2 carries into an argument that yields the approxi-

mation guarantee.

(11.15) The set S returned by the algorithm is a vertex cover, and its cost is

at most twice the minimum cost of any vertex cover.

Proof. First note that S is indeed a vertex cover. Suppose, by contradiction,

that S does not cover edge e = (i, j). This implies that neither i nor j is tight,

and this contradicts the fact that the While loop of the algorithm terminated.

To get the claimed approximation bound, we simply put together statement

(11.14) with (11.13). Let p be the prices set by the algorithm, and let S∗ be an

optimal vertex cover. By (11.14) we have 2
∑

e∈E pe ≥ w(S), and by (11.13) we

have
∑

e∈E pe ≤ w(S∗).

In other words, the sum of the edge prices is a lower bound on the weight

of any vertex cover, and twice the sum of the edge prices is an upper bound

on the weight of our vertex cover:

w(S) ≤ 2
∑

e∈E

pe ≤ 2w(S∗).

624 Chapter 11 Approximation Algorithms

11.5 Maximization via the Pricing Method:
The Disjoint Paths Problem

We now continue the theme of pricing algorithms with a fundamental problem

that arises in network routing: the Disjoint Paths Problem. We’ll start out by

developing a greedy algorithm for this problem and then show an improved

algorithm based on pricing.

The Problem

To set up the problem, it helps to recall one of the first applications we saw

for the Maximum-Flow Problem: finding disjoint paths in graphs, which we

discussed in Chapter 7. There we were looking for edge-disjoint paths all

starting at a node s and ending at a node t. How crucial is it to the tractability

of this problem that all paths have to start and end at the same node? Using the

technique from Section 7.7, one can extend this to find disjoint paths where

we are given a set of start nodes S and a set of terminals T, and the goal is

to find edge-disjoint paths where paths may start at any node in S and end at

any node in T.

Here, however, we will look at a case where each path to be routed has

its own designated starting node and ending node. Specifically, we consider

the following Maximum Disjoint Paths Problem. We are given a directed graph

G, together with k pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk) and an integer

capacity c. We think of each pair (si, ti) as a routing request, which asks for a

path from si to ti. A solution to this instance consists of a subset of the requests

we will satisfy, I ⊆ {1, . . . , k}, together with paths that satisfy them while not

overloading any one edge: a path Pi for i ∈ I so that Pi goes from si to ti, and

each edge is used by at most c paths. The problem is to find a solution with |I|
as large as possible—that is, to satisfy as many requests as possible. Note that

the capacity c controls how much “sharing” of edges we allow; when c = 1,

we are requiring the paths to be fully edge-disjoint, while larger c allows some

overlap among the paths.

We have seen in Exercise 39 in Chapter 8 that it is NP-complete to

determine whether all k routing requests can be satisfied when the paths are

required to be node-disjoint. It is not hard to show that the edge-disjoint version

of the problem (corresponding to the case with c = 1) is also NP-complete.

Thus it turns out to have been crucial for the application of efficient

network flow algorithms that the endpoints of the paths not be explicitly paired

up as they are in Maximum Disjoint Paths. To develop this point a little further,

suppose we attempted to reduce Maximum Disjoint Paths to a network flow

problem by defining the set of sources to be S = {s1, s2, . . . , sk}, defining the

11.5 Maximization via the Pricing Method: The Disjoint Paths Problem 625

set of sinks to be T = {t1, t2, . . . , tk}, setting each edge capacity to be c, and

looking for the maximum possible number of disjoint paths starting in S and

ending in T. Why wouldn’t this work? The problem is that there’s no way

to tell the flow algorithm that a path starting at si ∈ S must end at ti ∈ T; the

algorithm guarantees only that this path will end at some node in T. As a

result, the paths that come out of the flow algorithm may well not constitute a

solution to the instance of Maximum Disjoint Paths, since they might not link

a source si to its corresponding endpoint ti.

Disjoint paths problems, where we need to find paths connecting desig-

nated pairs of terminal nodes, are very common in networking applications.

Just think about paths on the Internet that carry streaming media or Web data,

or paths through the phone network carrying voice traffic.1 Paths sharing edges

can interfere with each other, and too many paths sharing a single edge will

cause problems in most applications. The maximum allowable amount of shar-

ing will differ from application to application. Requiring the paths to be disjoint

is the strongest constraint, eliminating all interference between paths. We’ll

see, however, that in cases where some sharing is allowed (even just two paths

to an edge), better approximation algorithms are possible.

Designing and Analyzing a Greedy Algorithm

We first consider a very simple algorithm for the case when the capacity c = 1:

that is, when the paths need to be edge-disjoint. The algorithm is essentially

greedy, except that it exhibits a preference for short paths. We will show that

this simple algorithm is an O(
√

m)-approximation algorithm, where m = |E|
is the number of edges in G. This may sound like a rather large factor of

approximation, and it is, but there is a strong sense in which it is essentially the

best we can do. The Maximum Disjoint Paths Problem is not only NP-complete,

but it is also hard to approximate: It has been shown that unless P = NP, it

is impossible for any polynomial-time algorithm to achieve an approximation

bound significantly better than O(
√

m) in arbitrary directed graphs.

After developing the greedy algorithm, we will consider a slightly more

sophisticated pricing algorithm for the capacitated version. It is interesting

1 A researcher from the telecommunications industry once gave the following explanation for the

distinction between Maximum Disjoint Paths and network flow, and the broken reduction in the

previous paragraph. On Mother’s Day, traditionally the busiest day of the year for telephone calls,

the phone company must solve an enormous disjoint paths problem: ensuring that each source

individual si is connected by a path through the voice network to his or her mother ti. Network flow

algorithms, finding disjoint paths between a set S and a set T, on the other hand, will ensure only

that each person gets their call through to somebody’s mother.

626 Chapter 11 Approximation Algorithms

The long path from

s1 to t1 blocks

everything else.

s1 t1

s2 s3 s4 s5 s6

t2 t3 t4 t5 t6

Figure 11.9 A case in which it’s crucial that a greedy algorithm for selecting disjoint

paths favors short paths over long ones.

to note that the pricing algorithm does much better than the simple greedy

algorithm, even when the capacity c is only slightly more than 1.

Greedy-Disjoint-Paths:

Set I = ∅
Until no new path can be found

Let Pi be the shortest path (if one exists) that is edge-disjoint

from previously selected paths, and connects some (si , ti) pair

that is not yet connected

Add i to I and select path Pi to connect si to ti

EndUntil

Analyzing the Algorithm The algorithm clearly selects edge-disjoint paths.

Assuming the graph G is connected, it must select at least one path. But how

does the number of paths selected compare with the maximum possible? A

kind of situation we need to worry about is shown in Figure 11.9: One of the

paths, from s1 to t1, is very long, so if we select it first, we eliminate up to

�(m) other paths.

We now show that the greedy algorithm’s preference for short paths not

only avoids the problem in this example, but in general it limits the number

of other paths that a selected path can interfere with.

(11.16) The algorithm Greedy-Disjoint-Paths is a (2
√

m + 1)-approx-

imation algorithm for the Maximum Disjoint Paths Problem.

Proof. Consider an optimal solution: Let I∗ be the set of pairs for which a path

was selected in this optimum solution, and let P∗
i for i ∈ I∗ be the selected paths.

Let I denote the set of pairs returned by the algorithm, and let Pi for i ∈ I be

the corresponding paths. We need to bound |I∗| in terms of |I|. The key to the

analysis is to make a distinction between short and long paths and to consider

11.5 Maximization via the Pricing Method: The Disjoint Paths Problem 627

them separately. We will call a path long if it has at least
√

m edges, and we

will call it short otherwise. Let I∗s denote the set of indices in I∗ so that the

corresponding path P∗
i is short, and let Is denote the set of indices in I so that

the corresponding path Pi is short.

The graph G has m edges, and each long path uses at least
√

m edges, so

there can be at most
√

m long paths in I∗.

Now consider the short paths in I∗. In order for I∗ to be much larger than

I, there would have to be many pairs that are connected in I∗ but not in I. Thus

let us consider pairs that are connected by the optimum using a short path,

but are not connected by the greedy algorithm. Since the path P∗
i connecting

si and ti in the optimal solution I∗ is short, the greedy algorithm would have

selected this path, if it had been available, before selecting any long paths.

But the greedy algorithm did not connect si and ti at all, and hence one of the

edges e along the path P∗
i must occur in a path Pj that was selected earlier by

the greedy algorithm. We will say that edge e blocks the path P∗
i .

Now the lengths of the paths selected by the greedy algorithm are mono-

tone increasing, since each iteration has fewer options for choosing paths.

The path Pj was selected before considering P∗
i and hence it must be shorter:

|Pj| ≤ |P∗
i | ≤ √

m. So path Pj is short. Since the paths used by the optimum are

edge-disjoint, each edge in a path Pj can block at most one path P∗
i . It follows

that each short path Pj blocks at most
√

m paths in the optimal solution, and

so we get the bound

|I∗s −I| ≤
∑

j∈Is

|Pj| ≤ |Is|
√

m.

We use this to produce a bound on the overall size of the optimal solution.

To do this, we view I∗ as consisting of three kinds of paths, following the

analysis thus far:

. long paths, of which there are at most
√

m;

. paths that are also in I; and

. short paths that are not in I, which we have just bounded by |Is|
√

m.

Putting this all together, and using the fact that |I| ≥ 1 whenever at least one

set of terminal pairs can be connected, we get the claimed bound:

|I∗| ≤
√

m + |I| + |I∗s −I| ≤
√

m + |I| +
√

m|Is| ≤ (2
√

m + 1)|I|.

This provides an approximation algorithm for the case when the selected

paths have to be disjoint. As we mentioned earlier, the approximation bound

of O(
√

m) is rather weak, but unless P = NP, it is essentially the best possible

for the case of disjoint paths in arbitrary directed graphs.

628 Chapter 11 Approximation Algorithms

Designing and Analyzing a Pricing Algorithm

Not letting any two paths use the same edge is quite extreme; in most

applications one can allow a few paths to share an edge. We will now develop

an analogous algorithm, based on the pricing method, for the case where c > 1

paths may share any edge. In the disjoint case just considered, we viewed all

edges as equal and preferred short paths. We can think of this as a simple kind

of pricing algorithm: the paths have to pay for using up the edges, and each

edge has a unit cost. Here we will consider a pricing scheme in which edges

are viewed as more expensive if they have been used already, and hence have

less capacity left over. This will encourage the algorithm to “spread out” its

paths, rather than piling them up on any single edge. We will refer to the cost

of an edge e as its length ℓe, and define the length of a path to be the sum of the

lengths of the edges it contains: ℓ(P) = ∑
e∈P ℓe. We will use a multiplicative

parameter β to increase the length of an edge each time an additional path

uses it.

Greedy-Paths-with-Capacity:

Set I = ∅
Set edge length ℓe = 1 for all e ∈ E

Until no new path can be found

Let Pi be the shortest path (if one exists) so that adding Pi to

the selected set of paths does not use any edge more than c

times, and Pi connects some (si , ti) pair not yet connected

Add i to I and select path Pi to connect si to ti

Multiply the length of all edges along Pi by β

EndUntil

Analyzing the Algorithm For the analysis we will focus on the simplest

case, when at most two paths may use the same edge—that is, when c = 2.

We’ll see that, for this case, setting β = m1/3 will give the best approximation

result for this algorithm. Unlike the disjoint paths case (when c = 1), it is

not known whether the approximation bounds we obtain here for c > 1 are

close to the best possible for polynomial-time algorithms in general, assuming

P �= NP.

The key to the analysis in the disjoint case was to distinguish “short” and

“long” paths. For the case when c = 2, we will consider a path Pi selected by

the algorithm to be short if the length is less than β2. Let Is denote the set of

short paths selected by the algorithm.

Next we want to compare the number of paths selected with the maximum

possible. Let I∗ be an optimal solution and P∗
i be the set of paths used in this

solution. As before, the key to the analysis is to consider the edges that block

11.5 Maximization via the Pricing Method: The Disjoint Paths Problem 629

the selection of paths in I∗. Long paths can block a lot of other paths, so for now

we will focus on the short paths in Is. As we try to continue following what we

did in the disjoint case, we immediately run into a difficulty, however. In that

case, the length of a path in I∗ was simply the number of edges it contained; but

here, the lengths are changing as the algorithm runs, and so it is not clear how

to define the length of a path in I∗ for purposes of the analysis. In other words,

for the analysis, when should we measure this length? (At the beginning of

the execution? At the end?)

It turns out that the crucial moment in the algorithm, for purposes of our

analysis, is the first point at which there are no short paths left to choose. Let

ℓ̄ be the length function at this point in the execution of the algorithm; we’ll

use ℓ̄ to measure the length of paths in I∗. For a path P, we use ℓ̄(P) to denote

its length,
∑

e∈P ℓ̄e. We consider a path P∗
i in the optimal solution I∗ short if

ℓ̄(P∗
i) < β2, and long otherwise. Let I∗s denote the set of short paths in I∗. The

first step is to show that there are no short paths connecting pairs that are not

connected by the approximation algorithm.

(11.17) Consider a source-sink pair i ∈ I∗ that is not connected by the approx-

imation algorithm; that is, i �∈ I. Then ℓ̄(P∗
i) ≥ β2.

Proof. As long as short paths are being selected, we do not have to worry

about explicitly enforcing the requirement that each edge be used by at most

c = 2 paths: any edge e considered for selection by a third path would already

have length ℓe = β2, and hence be long.

Consider the state of the algorithm with length ℓ̄. By the argument in the

previous paragraph, we can imagine the algorithm having run up to this point

without caring about the limit of c; it just selected a short path whenever it

could find one. Since the endpoints si, ti of P∗
i are not connected by the greedy

algorithm, and since there are no short paths left when the length function

reaches ℓ̄, it must be the case that path P∗
i has length at least β2 as measured

by ℓ̄.

The analysis in the disjoint case used the fact that there are only m edges

to limit the number of long paths. Here we consider length ℓ̄, rather than the

number of edges, as the quantity that is being consumed by paths. Hence,

to be able to reason about this, we will need a bound on the total length in

the graph
∑

e ℓ̄e. The sum of the lengths over all edges
∑

e ℓe starts out at m

(length 1 for each edge). Adding a short path to the solution Is can increase

the length by at most β3, as the selected path has length at most β2, and the

lengths of the edges are increased by a β factor along the path. This gives us

a useful comparison between the number of short paths selected and the total

length.

630 Chapter 11 Approximation Algorithms

(11.18) The set Is of short paths selected by the approximation algorithm,

and the lengths ℓ̄, satisfy the relation
∑

e ℓ̄e ≤ β3|Is| + m.

Finally, we prove an approximation bound for this algorithm. We will find

that even though we have simply increased the number of paths allowed on

each edge from 1 to 2, the approximation guarantee drops by a significant

amount that essentially incorporates this change into the exponent: from

O(m1/2) down to O(m1/3).

(11.19) The algorithm Greedy-Paths-with-Capacity, using β = m1/3, is

a (4m1/3 + 1)-approximation algorithm in the case when the capacity c = 2.

Proof. We first bound |I∗−I|. By (11.17), we have ℓ̄(P∗
i) ≥ β2 for all i ∈ I∗−I.

Summing over all paths in I∗−I, we get
∑

i∈I∗−I

ℓ̄(P∗
i) ≥ β2|I∗−I|.

On the other hand, each edge is used by at most two paths in the solution I∗,
so we have

∑

i∈I∗−I

ℓ̄(P∗
i) ≤

∑

e∈E

2ℓ̄e.

Combining these bounds with (11.18) we get

β2|I∗| ≤ β2|I∗−I| + β2|I| ≤
∑

i∈I∗−I

ℓ̄(P∗
i) + β2|I|

≤
∑

e∈E

2ℓ̄e + β2|I| ≤ 2(β3|I| + m) + β2|I|.

Finally, dividing through by β2, using |I| ≥ 1 and setting β = m1/3, we get that

|I∗| ≤ (4m1/3 + 1)|I|.

The same algorithm also works for the capacitated Disjoint Path Problem

with any capacity c > 0. If we choose β = m1/(c+1), then the algorithm is a

(2cm1/(c+1) + 1)-approximation algorithm. To extend the analysis, one has to

consider paths to be short if their length is at most βc.

(11.20) The algorithm Greedy-Paths-with-Capacity, using β = m1/c+1,

is a (2cm1/(c+1) + 1)-approximation algorithm when the the edge capacities are c.

11.6 Linear Programming and Rounding:
An Application to Vertex Cover

We will start by introducing a powerful technique from operations research:

linear programming. Linear programming is the subject of entire courses, and

11.6 Linear Programming and Rounding: An Application to Vertex Cover 631

we will not attempt to provide any kind of comprehensive overview of it

here. In this section, we will introduce some of the basic ideas underlying

linear programming and show how these can be used to approximate NP-hard

optimization problems.

Recall that in Section 11.4 we developed a 2-approximation algorithm

for the weighted Vertex Cover Problem. As a first application for the linear

programming technique, we’ll give here a different 2-approximation algorithm

that is conceptually much simpler (though slower in running time).

Linear Programming as a General Technique

Our 2-approximation algorithm for the weighted version of Vertex Cover will

be based on linear programming. We describe linear programming here not

just to give the approximation algorithm, but also to illustrate its power as a

very general technique.

So what is linear programming? To answer this, it helps to first recall, from

linear algebra, the problem of simultaneous linear equations. Using matrix-

vector notation, we have a vector x of unknown real numbers, a given matrix

A, and a given vector b; and we want to solve the equation Ax = b. Gaussian

elimination is a well-known efficient algorithm for this problem.

The basic Linear Programming Problem can be viewed as a more complex

version of this, with inequalities in place of equations. Specifically, consider

the problem of determining a vector x that satisfies Ax ≥ b. By this notation,

we mean that each coordinate of the vector Ax should be greater than or equal

to the corresponding coordinate of the vector b. Such systems of inequalities

define regions in space. For example, suppose x = (x1, x2) is a two-dimensional

vector, and we have the four inequalities

x1 ≥ 0, x2 ≥ 0

x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6

Then the set of solutions is the region in the plane shown in Figure 11.10.

Given a region defined by Ax ≥ b, linear programming seeks to minimize

a linear combination of the coordinates of x, over all x belonging to the region.

Such a linear combination can be written ctx, where c is a vector of coefficients,

and ctx denotes the inner product of two vectors. Thus our standard form for

Linear Programming, as an optimization problem, will be the following.

Given an m × n matrix A, and vectors b ∈ Rm and c ∈ Rn, find a vector

x ∈ Rn to solve the following optimization problem:

min(ctx such that x ≥ 0; Ax ≥ b).

632 Chapter 11 Approximation Algorithms

6

5

4

3

2

1

1 2 3 4 5 6

x1 ≥ 0, x2 ≥ 0

x1+ 2x2 ≥ 6

2x1+ x2 ≥ 6

The region satisfying the inequalities

Figure 11.10 The feasible region of a simple linear program.

ctx is often called the objective function of the linear program, and Ax ≥ b is

called the set of constraints. For example, suppose we define the vector c to

be (1.5, 1) in the example in Figure 11.10; in other words, we are seeking to

minimize the quantity 1.5x1 + x2 over the region defined by the inequalities.

The solution to this would be to choose the point x = (2, 2), where the two

slanting lines cross; this yields a value of ctx = 5, and one can check that there

is no way to get a smaller value.

We can phrase Linear Programming as a decision problem in the following

way.

Given a matrix A, vectors b and c, and a bound γ , does there exist x so

that x ≥ 0, Ax ≥ b, and ctx ≤ γ ?

To avoid issues related to how we represent real numbers, we will assume that

the coordinates of the vectors and matrices involved are integers.

The Computational Complexity of Linear Programming The decision ver-

sion of Linear Programming is in NP. This is intuitively very believable—we

just have to exhibit a vector x satisfying the desired properties. The one con-

cern is that even if all the input numbers are integers, such a vector x may

not have integer coordinates, and it may in fact require very large precision

to specify: How do we know that we’ll be able to read and manipulate it in

polynomial time? But, in fact, one can show that if there is a solution, then

there is one that is rational and needs only a polynomial number of bits to

write down; so this is not a problem.

11.6 Linear Programming and Rounding: An Application to Vertex Cover 633

Linear Programming was also known to be in co-NP for a long time, though

this is not as easy to see. Students who have taken a linear programming course

may notice that this fact follows from linear programming duality.2

For a long time, indeed, Linear Programming was the most famous ex-

ample of a problem in both NP and co-NP that was not known to have a

polynomial-time solution. Then, in 1981, Leonid Khachiyan, who at the time

was a young researcher in the Soviet Union, gave a polynomial-time algorithm

for the problem. After some initial concern in the U.S. popular press that this

discovery might turn out to be a Sputnik-like event in the Cold War (it didn’t),

researchers settled down to understand exactly what Khachiyan had done. His

initial algorithm, while polynomial-time, was in fact quite slow and imprac-

tical; but since then practical polynomial-time algorithms—so-called interior

point methods—have also been developed following the work of Narendra

Karmarkar in 1984.

Linear programming is an interesting example for another reason as well.

The most widely used algorithm for this problem is the simplex method. It

works very well in practice and is competitive with polynomial-time interior

methods on real-world problems. Yet its worst-case running time is known

to be exponential; it is simply that this exponential behavior shows up in

practice only very rarely. For all these reasons, linear programming has been a

very useful and important example for thinking about the limits of polynomial

time as a formal definition of efficiency.

For our purposes here, though, the point is that linear programming

problems can be solved in polynomial time, and very efficient algorithms

exist in practice. You can learn a lot more about all this in courses on linear

programming. The question we ask here is this: How can linear programming

help us when we want to solve combinatorial problems such as Vertex Cover?

Vertex Cover as an Integer Program

Recall that a vertex cover in a graph G = (V , E) is a set S ⊆ V so that each

edge has at least one end in S. In the weighted Vertex Cover Problem, each

vertex i ∈ V has a weight wi ≥ 0, with the weight of a set S of vertices denoted

w(S) = ∑
i∈S wi. We would like to find a vertex cover S for which w(S) is

minimum.

2 Those of you who are familiar with duality may also notice that the pricing method of the previous

sections is motivated by linear programming duality: the prices are exactly the variables in the

dual linear program (which explains why pricing algorithms are often referred to as primal-dual

algorithms).

634 Chapter 11 Approximation Algorithms

We now try to formulate a linear program that is in close correspondence

with the Vertex Cover Problem. Thus we consider a graph G = (V , E) with

a weight wi ≥ 0 on each node i. Linear programming is based on the use of

vectors of variables. In our case, we will have a decision variable xi for each

node i ∈ V to model the choice of whether to include node i in the vertex cover;

xi = 0 will indicate that node i is not in the vertex cover, and xi = 1will indicate

that node i is in the vertex cover. We can create a single n-dimensional vector

x in which the ith coordinate corresponds to the ith decision variable xi.

We use linear inequalities to encode the requirement that the selected

nodes form a vertex cover; we use the objective function to encode the goal

of minimizing the total weight. For each edge (i, j) ∈ E, it must have one end

in the vertex cover, and we write this as the inequality xi + xj ≥ 1. Finally,

to express the minimization problem, we write the set of node weights as

an n-dimensional vector w, with the ith coordinate corresponding to wi; we

then seek to minimize wtx. In summary, we have formulated the Vertex Cover

Problem as follows.

(VC.IP) Min
∑

i∈V

wixi

s.t. xi + xj ≥ 1 (i, j) ∈ E

xi ∈ {0, 1} i ∈ V .

We claim that the vertex covers of G are in one-to-one correspondence with

the solutions x to this system of linear inequalities in which all coordinates

are equal to 0 or 1.

(11.21) S is a vertex cover in G if and only if the vector x, defined as xi = 1

for i ∈ S, and xi = 0 for i �∈ S, satisfies the constraints in (VC.IP). Further, we

have w(S) = wtx.

We can put this system into the matrix form we used for linear program-

ming, as follows. We define a matrix A whose columns correspond to the nodes

in V and whose rows correspond to the edges in E; entry A[e, i]= 1 if node i

is an end of the edge e, and 0 otherwise. (Note that each row has exactly two

nonzero entries.) If we use �1 to denote the vector with all coordinates equal to

1, and �0 to denote the vector with all coordinates equal to 0, then the system

of inequalities above can be written as

Ax ≥ �1
�1≥ x ≥ �0.

11.6 Linear Programming and Rounding: An Application to Vertex Cover 635

But keep in mind that this is not just an instance of the Linear Programming

Problem: We have crucially required that all coordinates in the solution be

either 0 or 1. So our formulation suggests that we should solve the problem

min(wtx subject to �1≥ x ≥ �0, Ax ≥ �1, x has integer coordinates).

This is an instance of the Linear Programming Problem in which we require

the coordinates of x to take integer values; without this extra constraint,

the coordinates of x could be arbitrary real numbers. We call this problem

Integer Programming, as we are looking for integer-valued solutions to a linear

program.

Integer Programming is considerably harder than Linear Programming;

indeed, our discussion really constitutes a reduction from Vertex Cover to the

decision version of Integer Programming. In other words, we have proved

(11.22) Vertex Cover ≤P Integer Programming.

To show the NP-completeness of Integer Programming, we would still

have to establish that the decision version is in NP. There is a complication

here, as with Linear Programming, since we need to establish that there is

always a solution x that can be written using a polynomial number of bits. But

this can indeed be proven. Of course, for our purposes, the integer program

we are dealing with is explicitly constrained to have solutions in which each

coordinate is either 0 or 1. Thus it is clearly in NP, and our reduction from

Vertex Cover establishes that even this special case is NP-complete.

Using Linear Programming for Vertex Cover

We have yet to resolve whether our foray into linear and integer programming

will turn out to be useful or simply a dead end. Trying to solve the integer

programming problem (VC.IP) optimally is clearly not the right way to go, as

this is NP-hard.

The way to make progress is to exploit the fact that Linear Programming is

not as hard as Integer Programming. Suppose we take (VC.IP) and modify it,

dropping the requirement that each xi ∈ {0, 1} and reverting to the constraint

that each xi is an arbitrary real number between 0 and 1. This gives us an

instance of the Linear Programming Problem that we could call (VC.LP), and

we can solve it in polynomial time: We can find a set of values {x∗
i } between 0

and 1 so that x∗
i + x∗

j ≥ 1 for each edge (i, j), and
∑

i wix
∗
i is minimized. Let x∗

denote this vector, and wLP = wtx∗ denote the value of the objective function.

We note the following basic fact.

636 Chapter 11 Approximation Algorithms

(11.23) Let S∗ denote a vertex cover of minimum weight. Then wLP ≤ w(S∗).

Proof. Vertex covers of G correspond to integer solutions of (VC.IP), so the

minimum of min(wtx : �1≥ x ≥ 0, Ax ≥ 1) over all integer x vectors is exactly

the minimum-weight vertex cover. To get the minimum of the linear program

(VC.LP), we allow x to take arbitrary real-number values—that is, we minimize

over many more choices of x—and so the minimum of (VC.LP) is no larger

than that of (VC.IP).

Note that (11.23) is one of the crucial ingredients we need for an approx-

imation algorithm: a good lower bound on the optimum, in the form of the

efficiently computable quantity wLP.

However, wLP can definitely be smaller than w(S∗). For example, if the

graph G is a triangle and all weights are 1, then the minimum vertex cover has

a weight of 2. But, in a linear programming solution, we can set xi = 1
2 for all

three vertices, and so get a linear programming solution of weight only 3
2 . As

a more general example, consider a graph on n nodes in which each pair of

nodes is connected by an edge. Again, all weights are 1. Then the minimum

vertex cover has weight n − 1, but we can find a linear programming solution

of value n/2 by setting xi = 1
2 for all vertices i.

So the question is: How can solving this linear program help us actually

find a near-optimal vertex cover? The idea is to work with the values x∗
i and

to infer a vertex cover S from them. It is natural that if x∗
i = 1 for some node i,

then we should put it in the vertex cover S; and if x∗
i = 0, then we should leave

it out of S. But what should we do with fractional values in between? What

should we do if x∗
i = .4 or x∗

i = .5? The natural approach here is to round.

Given a fractional solution {x∗
i }, we define S = {i ∈ V : x∗

i ≥ 1
2}—that is, we

round values at least 1
2 up, and those below 1

2 down.

(11.24) The set S defined in this way is a vertex cover, and w(S) ≤ wLP.

Proof. First we argue that S is a vertex cover. Consider an edge e = (i, j). We

claim that at least one of i and j must be in S. Recall that one of our inequalities

is xi + xj ≥ 1. So in any solution x∗ that satisfies this inequality, either x∗
i ≥ 1

2

or x∗
j ≥ 1

2 . Thus at least one of these two will be rounded up, and i or j will be

placed in S.

Now we consider the weight w(S) of this vertex cover. The set S only has

vertices with x∗
i ≥ 1

2 ; thus the linear program “paid” at least 1
2wi for node i, and

we only pay wi: at most twice as much. More formally, we have the following

chain of inequalities.

wLPwtx∗ =
∑

i

wix
∗
i ≥

∑

i∈S

wix
∗
i ≥ 1

2

∑

i∈S

wi = 1

2
w(S).

11.7 Load Balancing Revisited: A More Advanced LP Application 637

Thus we have a produced a vertex cover S of weight at most 2wLP. The

lower bound in (11.23) showed that the optimal vertex cover has weight at

least wLP, and so we have the following result.

(11.25) The algorithm produces a vertex cover S of at most twice the minimum

possible weight.

* 11.7 Load Balancing Revisited: A More Advanced
LP Application

In this section we consider a more general load balancing problem. We will

develop an approximation algorithm using the same general outline as the 2-

approximation we just designed for Vertex Cover: We solve a corresponding

linear program, and then round the solution. However, the algorithm and its

analysis here will be significantly more complex than what was needed for

Vertex Cover. It turns out that the instance of the Linear Programming Problem

we need to solve is, in fact, a flow problem. Using this fact, we will be able

to develop a much deeper understanding of what the fractional solutions to

the linear program look like, and we will use this understanding in order to

round them. For this problem, the only known constant-factor approximation

algorithm is based on rounding this linear programming solution.

The Problem

The problem we consider in this section is a significant, but natural, gener-

alization of the Load Balancing Problem with which we began our study of

approximation algorithms. There, as here, we have a set J of n jobs, and a set

M of m machines, and the goal is to assign each job to a machine so that the

maximum load on any machine will be as small as possible. In the simple Load

Balancing Problem we considered earlier, each job j can be assigned to any

machine i. Here, on the other hand, we will restrict the set of machines that

each job may consider; that is, for each job there is just a subset of machines

to which it can be assigned. This restriction arises naturally in a number of

applications: for example, we may be seeking to balance load while maintain-

ing the property that each job is assigned to a physically nearby machine, or

to a machine with an appropriate authorization to process the job.

More formally, each job j has a fixed given size tj ≥ 0 and a set of machines

Mj ⊆ M that it may be assigned to. The sets Mj can be completely arbitrary.

We call an assignment of jobs to machines feasible if each job j is assigned to

a machine i ∈ Mj. The goal is still to minimize the maximum load on any

machine: Using Ji ⊆ J to denote the jobs assigned to a machine i ∈ M in

a feasible assignment, and using Li = ∑
j∈Ji

tj to denote the resulting load,

638 Chapter 11 Approximation Algorithms

we seek to minimize maxi Li. This is the definition of the Generalized Load

Balancing Problem.

In addition to containing our initial Load Balancing Problem as a special

case (setting Mj = M for all jobs j), Generalized Load Balancing includes the

Bipartite Perfect Matching Problem as another special case. Indeed, given a

bipartite graph with the same number of nodes on each side, we can view the

nodes on the left as jobs and the nodes on the right as machines; we define

tj = 1 for all jobs j, and define Mj to be the set of machine nodes i such that

there is an edge (i, j) ∈ E. There is an assignment of maximum load 1 if and

only if there is a perfect matching in the bipartite graph. (Thus, network flow

techniques can be used to find the optimum load in this special case.) The

fact that Generalized Load Balancing includes both these problems as special

cases gives some indication of the challenge in designing an algorithm for it.

Designing and Analyzing the Algorithm

We now develop an approximation algorithm based on linear programming for

the Generalized Load Balancing Problem. The basic plan is the same one we

saw in the previous section: we’ll first formulate the problem as an equivalent

linear program where the variables have to take specific discrete values; we’ll

then relax this to a linear program by dropping this requirement on the values

of the variables; and then we’ll use the resulting fractional assignment to obtain

an actual assignment that is close to optimal. We’ll need to be more careful than

in the case of the Vertex Cover Problem in rounding the solution to produce

the actual assignment.

Integer and Linear Programming Formulations First we formulate the Gen-

eralized Load Balancing Problem as a linear program with restrictions on the

variable values. We use variables xij corresponding to each pair (i, j) of ma-

chine i ∈ M and job j ∈ J. Setting xij = 0 will indicate that job j is not assigned

to machine i, while setting xij = tj will indicate that all the load tj of job j is

assigned to machine i. We can think of x as a single vector with mn coordinates.

We use linear inequalities to encode the requirement that each job is

assigned to a machine: For each job j we require that
∑

i xij = tj. The load

of a machine i can then be expressed as Li = ∑
j xij. We require that xij = 0

whenever i �∈ Mj. We will use the objective function to encode the goal of

finding an assignment that minimizes the maximum load. To do this, we

will need one more variable, L, that will correspond to the load. We use the

inequalities
∑

j xij ≤ L for all machines i. In summary, we have formulated the

following problem.

11.7 Load Balancing Revisited: A More Advanced LP Application 639

(GL.IP) min L
∑

i

xij = tj for all j ∈ J

∑

j

xij ≤ L for all i ∈ M

xij ∈ {0, tj} for all j ∈ J , i ∈ Mj.

xij = 0 for all j ∈ J , i �∈ Mj.

First we claim that the feasible assignments are in one-to-one correspon-

dence with the solutions x satisfying the above constraints, and, in an optimal

solution to (GL.IP), L is the load of the corresponding assignment.

(11.26) An assignment of jobs to machines has load at most L if and only

if the vector x, defined by setting xij = tj whenever job j is assigned to machine

i, and xij = 0 otherwise, satisfies the constraints in (GL.IP), with L set to the

maximum load of the assignment.

Next we will consider the corresponding linear program obtained by

replacing the requirement that each xij ∈ {0, tj} by the weaker requirement that

xij ≥ 0 for all j ∈ J and i ∈ Mj. Let (GL.LP) denote the resulting linear program. It

would also be natural to add xij ≤ tj. We do not add these inequalities explicitly,

as they are implied by the nonnegativity and the equation
∑

i xij = tj that is

required for each job j.

We immediately see that if there is an assignment with load at most L, then

(GL.LP) must have a solution with value at most L. Or, in the contrapositive,

(11.27) If the optimum value of (GL.LP) is L, then the optimal load is at least

L∗ ≥ L.

We can use linear programming to obtain such a solution (x, L) in polyno-

mial time. Our goal will then be to use x to create an assignment. Recall that

the Generalized Load Balancing Problem is NP-hard, and hence we cannot ex-

pect to solve it exactly in polynomial time. Instead, we will find an assignment

with load at most two times the minimum possible. To be able to do this, we

will also need the simple lower bound (11.2), which we used already in the

original Load Balancing Problem.

(11.28) The optimal load is at least L∗ ≥ maxj tj.

Rounding the Solution When There Are No Cycles The basic idea is to

round the xij values to 0 or tj. However, we cannot use the simple idea of

just rounding large values up and small values down. The problem is that the

linear programming solution may assign small fractions of a job j to each of

640 Chapter 11 Approximation Algorithms

the m machines, and hence for some jobs there may be no large xij values.

The algorithm we develop will be a rounding of x in the weak sense that

each job j will be assigned to a machine i with xij > 0, but we may have to

round a few really small values up. This weak rounding already ensures that

the assignment is feasible, in the sense that we do not assign any job j to a

machine i not in Mj (because if i �∈ Mj, then we have xij = 0).

The key is to understand what the structure of the fractional solution is

like and to show that while a few jobs may be spread out to many machines,

this cannot happen to too many jobs. To this end, we’ll consider the following

bipartite graph G(x) = (V(x), E(x)): The nodes are V(x) = M ∪ J, the set of jobs

and the set of machines, and there is an edge (i, j) ∈ E(x) if and only if xij > 0.

We’ll show that, given any solution for (GL.LP), we can obtain a new

solution x with the same load L, such that G(x) has no cycles. This is the

crucial step, as we show that a solution x with no cycles can be used to obtain

an assignment with load at most L + L∗.

(11.29) Given a solution (x, L) of (GL.LP) such that the graph G(x) has no

cycles, we can use this solution x to obtain a feasible assignment of jobs to

machines with load at most L + L∗ in O(mn) time.

Proof. Since the graph G(x) has no cycles, each of its connected components

is a tree. We can produce the assignment by considering each component

separately. Thus, consider one of the components, which is a tree whose nodes

correspond to jobs and machines, as shown in Figure 11.11.

First, root the tree at an arbitrary node. Now consider a job j. If the node

corresponding to job j is a leaf of the tree, let machine node i be its parent.

Since j has degree 1 in the tree G(x), machine i is the only machine that has

been assigned any part of job j, and hence we must have that xij = tj. Our

assignment will assign such a job j to its only neighbor i. For a job j whose

corresponding node is not a leaf in G(x), we assign j to an arbitrary child of

the corresponding node in the rooted tree.

The method can clearly be implemented in O(mn) time (including the

time to set up the graph G(x)). It defines a feasible assignment, as the linear

program (GL.LP) required that xij = 0 whenever i �∈ Mj. To finish the proof, we

need to show that the load is at most L + L∗. Let i be any machine, and let Ji

be the set of jobs assigned to machine i. The jobs assigned to machine i form

a subset of the neighbors of i in G(x): the set Ji contains those children of node

i that are leaves, plus possibly the parent p(i) of node i. To bound the load,

we consider the parent p(i) separately. For all other jobs j �= p(i) assigned to

i, we have xij = tj, and hence we can bound the load using the solution x, as

follows.

11.7 Load Balancing Revisited: A More Advanced LP Application 641

Each internal job node is

assigned to an arbitrary child.

Each leaf is assigned

to its parent.

Figure 11.11 An example of a graph G(x)with no cycles, where the squares aremachines

and the circles are jobs. The solid lines show the resulting assignment of jobs to

machines.

∑

j∈Ji , j �=p(i)

tj ≤
∑

j∈J

xij ≤ L,

using the inequality bounding the load in (GL.LP). For the parent j = p(i) of

node i, we use tj ≤ L∗ by (11.28). Adding the two inequalities, we get that∑
j∈Ji

pij ≤ L + L∗, as claimed.

Now, by (11.27), we know that L ≤ L∗, so a solution whose load is bounded

by L + L∗ is also bounded by 2L∗—in other words, twice the optimum. Thus

we have the following consequence of (11.29).

(11.30) Given a solution (x, L) of (GL.LP) such that the graph G(x) has no

cycles, then we can use this solution x to obtain a feasible assignment of jobs

to machines with load at most twice the optimum in O(mn) time.

Eliminating Cycles from the Linear Programming Solution To wrap up

our approximation algorithm, then, we just need to show how to convert

642 Chapter 11 Approximation Algorithms

Jobs

Machines

L

L

L

Supply = tj

Demand = ∑ j tjvi

j

Figure 11.12 The network flow computation used to find a solution to (GL.LP). Edges

between the jobs and machines have infinite capacity.

an arbitrary solution of (GL.LP) into a solution x with no cycles in G(x). In

the process, we will also show how to obtain a solution to the linear program

(GL.LP) using flow computations. More precisely, given a fixed load value L,

we show how to use a flow computation to decide if (GL.LP) has a solution

with value at most L. For this construction, consider the following directed

graph G = (V , E) shown in Figure 11.12. The set of vertices of the flow graph

G will be V = M ∪ J ∪ {v}, where v is a new node. The nodes j ∈ J will be

sources with supply tj, and the only demand node is the new sink v, which

has demand
∑

j tj. We’ll think of the flow in this network as “load” flowing

from jobs to the sink v via the machines. We add an edge (j, i) with infinite

capacity from job j to machine i if and only if i ∈ Mj. Finally, we add an edge

(i, v) for each machine node i with capacity L.

(11.31) The solutions of this flow problem with capacity L are in one-to-one

correspondence with solutions of (GL.LP) with value L, where xij is the flow

value along edge (i, j), and the flow value on edge (i, t) is the load
∑

j xij on

machine i.

11.7 Load Balancing Revisited: A More Advanced LP Application 643

This statement allows us to solve (GL.LP) using flow computations and a

binary search for the optimal value L: we try successive values of L until we

find the smallest one for which there is a feasible flow.

Here we’ll use the understanding we gained of (GL.LP) from the equivalent

flow formulation to modify a solution x to eliminate all cycles from G(x). In

terms of the flow we have just defined, G(x) is the undirected graph obtained

from G by ignoring the directions of the edges, deleting the sink v and all

adjacent edges, and also deleting all edges from J to M that do not carry flow.

We’ll eliminate all cycles in G(x) in a sequence of at most mn steps, where

the goal of a single step is to eliminate at least one edge from G(x) without

increasing the load L or introducing any new edges.

(11.32) Let (x, L) be any solution to (GL.LP) and C be a cycle in G(x). In

time linear in the length of the cycle, we can modify the solution x to eliminate

at least one edge from G(x) without increasing the load or introducing any new

edges.

Proof. Consider the cycle C in G(x). Recall that G(x) corresponds to the

set of edges that carry flow in the solution x. We will modify the solution

by augmenting the flow along the cycle C, using essentially the procedure

augment from Section 7.1. The augmentation along a cycle will not change

the balance between incoming and outgoing flow at any node; rather, it will

eliminate one backward edge from the residual graph, and hence an edge

from G(x). Assume that the nodes along the cycle are i1, j1, i2, j2, . . . , ik, jk,

where iℓ is a machine node and jℓ is a job node. We’ll modify the solution

by decreasing the flow along all edges (jℓ, iℓ) and increasing the flow on the

edges (jℓ, iℓ+1) for all ℓ = 1, . . . , k (where k + 1 is used to denote 1), by the

same amount δ. This change will not affect the flow conservation constraints.

By setting δ = mink
ℓ=1 xiℓjℓ

, we ensure that the flow remains feasible and the

edge obtaining the minimum is deleted from G(x).

We can use the algorithm contained in the proof of (11.32) repeatedly to

eliminate all cycles from G(x). Initially, G(x) may have mn edges, so after at

most O(mn) iterations, the resulting solution (x, L) will have no cycles in G(x).

At this point, we can use (11.30) to obtain a feasible assignment with at most

twice the optimal load. We summarize the result by the following statement.

(11.33) Given an instance of the Generalized Load Balancing Problem, we

can find, in polynomial time, a feasible assignment with load at most twice the

minimum possible.

644 Chapter 11 Approximation Algorithms

11.8 Arbitrarily Good Approximations:
The Knapsack Problem

Often, when you talk to someone faced with an NP-hard optimization problem,

they’re hoping you can give them something that will produce a solution

within, say, 1 percent of the optimum, or at least within a small percentage

of optimal. Viewed from this perspective, the approximation algorithms we’ve

seen thus far come across as quite weak: solutions within a factor of 2 of the

minimum for Center Selection and Vertex Cover (i.e., 100 percent more than

optimal). The Set Cover Algorithm in Section 10.3 is even worse: Its cost is not

even within a fixed constant factor of the minimum possible!

Here is an important point underlying this state of affairs: NP-complete

problems, as you well know, are all equivalent with respect to polynomial-

time solvability; but assuming P �= NP, they differ considerably in the extent

to which their solutions can be efficiently approximated. In some cases, it is

actually possible to prove limits on approximability. For example, if P �= NP,

then the guarantee provided by our Center Selection Algorithm is the best

possible for any polynomial-time algorithm. Similarly, the guarantee provided

by the Set Cover Algorithm, however bad it may seem, is very close to the

best possible, unless P = NP. For other problems, such as the Vertex Cover

Problem, the approximation algorithm we gave is essentially the best known,

but it is an open question whether there could be polynomial-time algorithms

with better guarantees. We will not discuss the topic of lower bounds on

approximability in this book; while some lower bounds of this type are not so

difficult to prove (such as for Center Selection), many are extremely technical.

The Problem

In this section, we discuss an NP-complete problem for which it is possible to

design a polynomial-time algorithm providing a very strong approximation. We

will consider a slightly more general version of the Knapsack (or Subset Sum)

Problem. Suppose you have n items that you consider packing in a knapsack.

Each item i = 1, . . . , n has two integer parameters: a weight wi and a value

vi. Given a knapsack capacity W, the goal of the Knapsack Problem is to find

a subset S of items of maximum value subject to the restriction that the total

weight of the set should not exceed W. In other words, we wish to maximize∑
i∈S vi subject to the condition

∑
i∈S wi ≤ W.

How strong an approximation can we hope for? Our algorithm will take

as input the weights and values defining the problem and will also take an

extra parameter ǫ, the desired precision. It will find a subset S whose total

weight does not exceed W, with value
∑

i∈S vi at most a (1+ ǫ) factor below

the maximum possible. The algorithm will run in polynomial time for any

11.8 Arbitrarily Good Approximations: The Knapsack Problem 645

fixed choice of ǫ > 0; however, the dependence on ǫ will not be polynomial.

We call such an algorithm a polynomial-time approximation scheme.

You may ask: How could such a strong kind of approximation algorithm

be possible in polynomial time when the Knapsack Problem is NP-hard? With

integer values, if we get close enough to the optimum value, we must reach the

optimum itself! The catch is in the nonpolynomial dependence on the desired

precision: for any fixed choice of ǫ, such as ǫ = .5, ǫ = .2, or even ǫ = .01, the

algorithm runs in polynomial time, but as we change ǫ to smaller and smaller

values, the running time gets larger. By the time we make ǫ small enough

to make sure we get the optimum value, it is no longer a polynomial-time

algorithm.

Designing the Algorithm

In Section 6.4 we considered algorithms for the Subset Sum Problem, the

special case of the Knapsack Problem when vi = wi for all items i. We gave a

dynamic programming algorithm for this special case that ran in O(nW) time

assuming the weights are integers. This algorithm naturally extends to the more

general Knapsack Problem (see the end of Section 6.4 for this extension). The

algorithm given in Section 6.4 works well when the weights are small (even if

the values may be big). It is also possible to extend our dynamic programming

algorithm for the case when the values are small, even if the weights may be

big. At the end of this section, we give a dynamic programming algorithm for

that case running in time O(n2v∗), where v∗ = maxi vi. Note that this algorithm

does not run in polynomial time: It is only pseudo-polynomial, because of its

dependence on the size of the values vi. Indeed, since we proved this problem

to be NP-complete in Chapter 8, we don’t expect to be able to find a polynomial-

time algorithm.

Algorithms that depend on the values in a pseudo-polynomial way can

often be used to design polynomial-time approximation schemes, and the

algorithm we develop here is a very clean example of the basic strategy. In

particular, we will use the dynamic programming algorithm with running time

O(n2v∗) to design a polynomial-time approximation scheme; the idea is as

follows. If the values are small integers, then v∗ is small and the problem can

be solved in polynomial time already. On the other hand, if the values are

large, then we do not have to deal with them exactly, as we only want an

approximately optimum solution. We will use a rounding parameter b (whose

value we’ll set later) and will consider the values rounded to an integer multiple

of b. We will use our dynamic programming algorithm to solve the problem

with the rounded values. More precisely, for each item i, let its rounded value

be ṽi = ⌈vi/b⌉b. Note that the rounded and the original value are quite close

to each other.

646 Chapter 11 Approximation Algorithms

(11.34) For each item i we have vi ≤ ṽi ≤ vi + b.

What did we gain by the rounding? If the values were big to start with, we

did not make them any smaller. However, the rounded values are all integer

multiples of a common value b. So, instead of solving the problem with the

rounded values ṽi, we can change the units; we can divide all values by b and

get an equivalent problem. Let v̂i = ṽi/b = ⌈vi/b⌉ for i = 1, . . . , n.

(11.35) The Knapsack Problem with values ṽi and the scaled problem with

values v̂i have the same set of optimum solutions, the optimum values differ

exactly by a factor of b, and the scaled values are integral.

Now we are ready to state our approximation algorithm. We will assume

that all items have weight at most W (as items with weight wi > W are not in

any solution, and hence can be deleted). We also assume for simplicity that

ǫ−1 is an integer.

Knapsack-Approx(ǫ):

Set b = (ǫ/(2n)) maxi vi

Solve the Knapsack Problem with values v̂i (equivalently ṽi)

Return the set S of items found

Analyzing the Algorithm

First note that the solution found is at least feasible; that is,
∑

i∈S wi ≤ W. This

is true as we have rounded only the values and not the weights. This is why

we need the new dynamic programming algorithm described at the end of this

section.

(11.36) The set of items S returned by the algorithm has total weight at most

W, that is
∑

i∈S wi ≤ W.

Next we’ll prove that this algorithm runs in polynomial time.

(11.37) The algorithm Knapsack-Approx runs in polynomial time for any

fixed ǫ > 0.

Proof. Setting b and rounding item values can clearly be done in polynomial

time. The time-consuming part of this algorithm is the dynamic programming

to solve the rounded problem. Recall that for problems with integer values,

the dynamic programming algorithm we use runs in time O(n2v∗), where

v∗ = maxi vi.

Now we are applying this algorithms for an instance in which each item

i has weight wi and value v̂i. To determine the running time, we need to

11.8 Arbitrarily Good Approximations: The Knapsack Problem 647

determine maxi v̂i. The item j with maximum value vj = maxi vi also has

maximum value in the rounded problem, so maxi v̂i = v̂j = ⌈vj/b⌉ = nǫ−1.

Hence the overall running time of the algorithm is O(n3ǫ−1). Note that this

is polynomial time for any fixed ǫ > 0 as claimed; but the dependence on the

desired precision ǫ is not polynomial, as the running time includes ǫ−1 rather

than log ǫ−1.

Finally, we need to consider the key issue: How good is the solution

obtained by this algorithm? Statement (11.34) shows that the values ṽi we used

are close to the real values vi, and this suggests that the solution obtained may

not be far from optimal.

(11.38) If S is the solution found by the Knapsack-Approx algorithm, and

S∗ is any other solution satisfying
∑

i∈S∗ wi ≤ W, then we have (1+ ǫ)
∑

i∈S vi ≥∑
i∈S∗ vi.

Proof. Let S∗ be any set satisfying
∑

i∈S∗ wi ≤ W. Our algorithm finds the

optimal solution with values ṽi, so we know that

∑

i∈S

ṽi ≥
∑

i∈S∗
ṽi.

The rounded values ṽi and the real values vi are quite close by (11.34), so we

get the following chain of inequalities.

∑

i∈S∗
vi ≤

∑

i∈S∗
ṽi ≤

∑

i∈S

ṽi ≤
∑

i∈S

(vi + b) ≤ nb +
∑

i∈S

vi,

showing that the value
∑

i∈S vi of the solution we obtained is at most nb

smaller than the maximum value possible. We wanted to obtain a relative

error showing that the value obtained,
∑

i∈S vi, is at most a (1+ ǫ) factor less

than the maximum possible, so we need to compare nb to the value
∑

i∈S vi.

Let j be the item with largest value; by our choice of b, we have vj = 2ǫ−1nb

and vj = ṽj. By our assumption that each item alone fits in the knapsack (wi ≤
W for all i), we have

∑
i∈S ṽi ≥ ṽj = 2ǫ−1nb. Finally, the chain of inequalities

above says
∑

i∈S vi ≥ ∑
i∈S ṽi − nb, and thus

∑
i∈S vi ≥ (2ǫ−1 − 1)nb. Hence

nb ≤ ǫ
∑

i∈S vi for ǫ ≤ 1, and so

∑

i∈S∗
vi ≤

∑

i∈S

vi + nb ≤ (1+ ǫ)
∑

i∈S

vi.

648 Chapter 11 Approximation Algorithms

The New Dynamic Programming Algorithm for the
Knapsack Problem

To solve a problem by dynamic programming, we have to define a polynomial

set of subproblems. The dynamic programming algorithm we defined when we

studied the Knapsack Problem earlier uses subproblems of the form OPT(i, w):

the subproblem of finding the maximum value of any solution using a subset of

the items 1, . . . , i and a knapsack of weight w. When the weights are large, this

is a large set of problems. We need a set of subproblems that work well when

the values are reasonably small; this suggests that we should use subproblems

associated with values, not weights. We define our subproblems as follows.

The subproblem is defined by i and a target value V, and OPT(i, V) is the

smallest knapsack weight W so that one can obtain a solution using a subset

of items {1, . . . , i} with value at least V. We will have a subproblem for all

i = 0, . . . , n and values V = 0, . . . ,
∑i

j=1 vj. If v∗ denotes maxi vi, then we see

that the largest V can get in a subproblem is
∑n

j=1 vj ≤ nv∗. Thus, assuming

the values are integral, there are at most O(n2v∗) subproblems. None of these

subproblems is precisely the original instance of Knapsack, but if we have the

values of all subproblems OPT(n, V) for V = 0, . . . ,
∑

i vi, then the value of

the original problem can be obtained easily: it is the largest value V such that

OPT(n, V) ≤ W.

It is not hard to give a recurrence for solving these subproblems. By

analogy with the dynamic programming algorithm for Subset Sum, we consider

cases depending on whether or not the last item n is included in the optimal

solution O.

. If n �∈ O, then OPT(n, V) = OPT(n − 1, V).

. If n ∈ O is the only item in O, then OPT(n, V) = wn.

. If n ∈ O is not the only item in O, then OPT(n, V) = wn + OPT(n − 1,

V − vn).

These last two options can be summarized more compactly as

. If n ∈ O, then OPT(n, V) = wn + OPT(n − 1, max(0, V − vn)).

This implies the following analogue of the recurrence (6.8) from Chapter 6.

(11.39) If V >
∑n−1

i=1 vi, then OPT(n, V) = wn + OPT(n − 1, V − vn). Otherwise

OPT(n, V) = min(OPT(n − 1, V), wn + OPT(n − 1, max(0, V − vn))).

We can then write down an analogous dynamic programming algorithm.

Knapsack(n):

Array M[0 . . . n, 0 . . . V]

Solved Exercises 649

For i = 0, . . . , n

M[i, 0] = 0

Endfor

For i = 1, 2, . . . , n

For V = 1, . . . ,
∑i

j=1 vj

If V >
∑i−1

j=1 vj then

M[i, V]= wi + M[i − 1, V]

Else

M[i, V]= min(M[i − 1, V], wi + M[i − 1, max(0, V − vi)])

Endif

Endfor

Endfor

Return the maximum value V such that M[n, V]≤ W

(11.40) Knapsack(n) takes O(n2v∗) time and correctly computes the optimal

values of the subproblems.

As was done before, we can trace back through the table M containing the

optimal values of the subproblems, to find an optimal solution.

Solved Exercises

Solved Exercise 1

Recall the Shortest-First greedy algorithm for the Interval Scheduling Problem:

Given a set of intervals, we repeatedly pick the shortest interval I, delete all

the other intervals I ′ that intersect I, and iterate.

In Chapter 4, we saw that this algorithm does not always produce a

maximum-size set of nonoverlapping intervals. However, it turns out to have

the following interesting approximation guarantee. If s∗ is the maximum size

of a set of nonoverlapping intervals, and s is the size of the set produced

by the Shortest-First Algorithm, then s ≥ 1
2s∗ (that is, Shortest-First is a 2-

approximation).

Prove this fact.

Solution Let’s first recall the example in Figure 4.1 from Chapter 4, which

showed that Shortest-First does not necessarily find an optimal set of intervals.

The difficulty is clear: We may select a short interval j while eliminating two

longer flanking intervals i and i′. So we have done only half as well as the

optimum.

The question is to show that Shortest-First could never do worse than this.

The issues here are somewhat similar to what came up in the analysis of the

650 Chapter 11 Approximation Algorithms

greedy algorithm for the Maximum Disjoint Paths Problem in Section 11.5: Each

interval we select may “block” some of the intervals in an optimal solution, and

we want to argue that by always selecting the shortest possible interval, these

blocking effects are not too severe. In the case of disjoint paths, we analyzed

the overlaps among paths essentially edge by edge, since the underlying graph

there had an arbitrary structure. Here we can benefit from the highly restricted

structure of intervals on a line so as to obtain a stronger bound.

In order for Shortest-First to do less than half as well as the optimum, there

would have to be a large optimal solution that overlaps with a much smaller

solution chosen by Shortest-First. Intuitively, it seems that the only way this

could happen would be to have one of the intervals i in the optimal solution

nested completely inside one of the intervals j chosen by Shortest-First. This

in turn would contradict the behavior of Shortest-First: Why didn’t it choose

this shorter interval i that’s nested inside j?

Let’s see if we can make this argument precise. Let A denote the set of

intervals chosen by Shortest-First, and let O denote an optimal set of intervals.

For each interval j ∈ A, consider the set of intervals in O that it conflicts with.

We claim

(11.41) Each interval j ∈ A conflicts with at most two intervals in O.

Proof. Assume by way of contradiction that there is an interval in j ∈ A that

conflicts with at least three intervals in i1, i2, i3 ∈ O. These three intervals do

not conflict with one another, as they are part of a single solution O, so they

are ordered sequentially in time. Suppose they are ordered with i1 first, then

i2, and then i3. Since interval j conflicts with both i1 and i3, the interval i2 in

between must be shorter than j and fit completely inside it. Moreover, since i2
was never selected by Shortest-First, it must have been available as an option

when Shortest-First selected interval j. This is a contradiction, since i2 is shorter

than j.

The Shortest-First Algorithm only terminates when every unselected inter-

val conflicts with one of the intervals it selected. So, in particular, each interval

in O is either included in A, or conflicts with an interval in A.

Now we use the following accounting scheme to bound the number of

intervals in O. For each i ∈ O, we have some interval j ∈ A “pay” for i, as

follows. If i is also in A, then i will pay for itself. Otherwise, we arbitrarily

choose an interval j ∈ A that conflicts with i and have j pay for i. As we just

argued, every interval in O conflicts with some interval in A, so all intervals

in O will be paid for under this scheme. But by (11.41), each interval j ∈ A

conflicts with at most two intervals in O, and so it will only pay for at most

Exercises 651

two intervals. Thus, all intervals in O are paid for by intervals in A, and in this

process each interval in A pays at most twice. If follows that A must have at

least half as many intervals as O.

Exercises

1. Suppose you’re acting as a consultant for the Port Authority of a small

Pacific Rim nation. They’re currently doing amulti-billion-dollar business

per year, and their revenue is constrained almost entirely by the rate at

which they can unload ships that arrive in the port.

Here’s a basic sort of problem they face. A ship arrives, with n con-

tainers of weight w1, w2, . . . , wn. Standing on the dock is a set of trucks,

each of which can hold K units of weight. (You can assume that K and

each wi is an integer.) You can stack multiple containers in each truck,

subject to the weight restriction of K ; the goal is to minimize the number

of trucks that are needed in order to carry all the containers. This problem

is NP-complete (you don’t have to prove this).

A greedy algorithm you might use for this is the following. Start with

an empty truck, and begin piling containers 1, 2, 3, . . . into it until you get

to a container that would overflow theweight limit. Nowdeclare this truck

“loaded” and send it off; then continue the process with a fresh truck.

This algorithm, by considering trucks one at a time, may not achieve the

most efficient way to pack the full set of containers into an available

collection of trucks.

(a) Give an example of a set of weights, and a value of K , where this

algorithm does not use the minimum possible number of trucks.

(b) Show, however, that the number of trucks used by this algorithm is

within a factor of 2 of the minimum possible number, for any set of

weights and any value of K .

2. At a lecture in a computational biology conference one of us attended

a few years ago, a well-known protein chemist talked about the idea of

building a “representative set” for a large collection of protein molecules

whose properties we don’t understand. The idea would be to intensively

study the proteins in the representative set and thereby learn (by infer-

ence) about all the proteins in the full collection.

To be useful, the representative set must have two properties.

. It should be relatively small, so that it will not be too expensive to

study it.

652 Chapter 11 Approximation Algorithms

. Every protein in the full collection should be “similar” to some pro-

tein in the representative set. (In this way, it truly provides some

information about all the proteins.)

More concretely, there is a large set P of proteins. We define similarity

on proteins by a distance function d: Given two proteins p and q, it returns

a number d(p, q) ≥ 0. In fact, the function d(·, ·) most typically used is

the sequence alignment measure, which we looked at when we studied

dynamic programming in Chapter 6. We’ll assume this is the distance

being used here. There is a predefined distance cut-off � that’s specified

as part of the input to the problem; two proteins p and q are deemed to

be “similar” to one another if and only if d(p, q) ≤ �.

We say that a subset of P is a representative set if, for every protein

p, there is a protein q in the subset that is similar to it—that is, for which

d(p, q) ≤ �. Our goal is to find a representative set that is as small as

possible.

(a) Give a polynomial-time algorithm that approximates the minimum

representative set to within a factor of O(log n). Specifically, your

algorithm should have the following property: If the minimum pos-

sible size of a representative set is s∗, your algorithm should return

a representative set of size at most O(s∗ log n).

(b) Note the close similarity between this problem and the Center Selec-

tion Problem—a problem for which we considered approximation

algorithms in Section 11.2. Why doesn’t the algorithm described

there solve the current problem?

3. Suppose you are given a set of positive integers A = {a1, a2, . . . , an} and

a positive integer B. A subset S ⊆ A is called feasible if the sum of the

numbers in S does not exceed B:

∑

ai∈S

ai ≤ B.

The sum of the numbers in S will be called the total sum of S.

You would like to select a feasible subset S of A whose total sum is

as large as possible.

Example. If A = {8, 2, 4} and B = 11, then the optimal solution is the subset

S = {8, 2}.
(a) Here is an algorithm for this problem.

Initially S = φ

Define T = 0

For i = 1, 2, . . . , n

Exercises 653

If T + ai ≤ B then

S ← S ∪ {ai}
T ← T + ai

Endif

Endfor

Give an instance in which the total sum of the set S returned by

this algorithm is less than half the total sum of some other feasible

subset of A.

(b) Give a polynomial-time approximation algorithm for this problem

with the following guarantee: It returns a feasible set S ⊆ A whose

total sum is at least half as large as the maximum total sum of any

feasible set S′ ⊆ A. Your algorithm should have a running time of at

most O(n log n).

4. Consider an optimization version of the Hitting Set Problem defined as

follows. We are given a set A = {a1, . . . , an} and a collection B1, B2, . . . , Bm

of subsets of A. Also, each element ai ∈ A has aweight wi ≥ 0. The problem

is to find a hitting set H ⊆ A such that the total weight of the elements in

H, that is,
∑

ai∈H wi, is as small as possible. (As in Exercise 5 in Chapter 8,

we say that H is a hitting set if H ∩ Bi is not empty for each i.) Let b =
maxi |Bi| denote the maximum size of any of the sets B1, B2, . . . , Bm. Give

a polynomial-time approximation algorithm for this problem that finds

a hitting set whose total weight is at most b times the minimum possible.

5. You are asked to consult for a business where clients bring in jobs each

day for processing. Each job has a processing time ti that is known when

the job arrives. The company has a set of ten machines, and each job can

be processed on any of these ten machines.

At the moment the business is running the simple Greedy-Balance

Algorithm we discussed in Section 11.1. They have been told that this

may not be the best approximation algorithm possible, and they are

wondering if they should be afraid of bad performance. However, they

are reluctant to change the scheduling as they really like the simplicity of

the current algorithm: jobs can be assigned to machines as soon as they

arrive, without having to defer the decision until later jobs arrive.

In particular, they have heard that this algorithm can produce so-

lutions with makespan as much as twice the minimum possible; but

their experience with the algorithm has been quite good: They have been

running it each day for the last month, and they have not observed it

to produce a makespan more than 20 percent above the average load,
1
10

∑
i ti.

654 Chapter 11 Approximation Algorithms

To try understanding why they don’t seem to be encountering this

factor-of-two behavior, you ask a bit about the kind of jobs and loads

they see. You find out that the sizes of jobs range between 1 and 50, that

is, 1≤ ti ≤ 50 for all jobs i; and the total load
∑

i ti is quite high each day:

it is always at least 3,000.

Prove that on the type of inputs the company sees, the Greedy-

Balance Algorithm will always find a solution whose makespan is at most

20 percent above the average load.

6. Recall that in the basic Load Balancing Problem from Section 11.1, we’re

interested in placing jobs onmachines so as to minimize themakespan—

the maximum load on any one machine. In a number of applications, it

is natural to consider cases in which you have access to machines with

different amounts of processing power, so that a given job may complete

more quickly on one of your machines than on another. The question

then becomes: How should you allocate jobs to machines in these more

heterogeneous systems?

Here’s a basic model that exposes these issues. Suppose you have

a system that consists of m slow machines and k fast machines. The

fast machines can perform twice as much work per unit time as the

slow machines. Now you’re given a set of n jobs; job i takes time ti to

process on a slow machine and time 1
2 ti to process on a fast machine.

You want to assign each job to a machine; as before, the goal is to

minimize the makespan—that is the maximum, over all machines, of the

total processing time of jobs assigned to that machine.

Give a polynomial-time algorithm that produces an assignment of

jobs to machines with a makespan that is at most three times the opti-

mum.

7. You’re consulting for an e-commerce site that receives a large number

of visitors each day. For each visitor i, where i ∈ {1, 2, . . . , n}, the site

has assigned a value vi, representing the expected revenue that can be

obtained from this customer.

Each visitor i is shown one of m possible ads A1, A2, . . . , Am as they

enter the site. The site wants a selection of one ad for each customer so

that each ad is seen, overall, by a set of customers of reasonably large

total weight. Thus, given a selection of one ad for each customer, we will

define the spread of this selection to be the minimum, over j = 1, 2, . . . , m,

of the total weight of all customers who were shown ad Aj.

Example Suppose there are six customers with values 3, 4, 12, 2, 4, 6, and

there are m = 3 ads. Then, in this instance, one could achieve a spread of

Exercises 655

9 by showing ad A1 to customers 1, 2, 4, ad A2 to customer 3, and ad A3 to

customers 5 and 6.

The ultimate goal is to find a selection of an ad for each customer

that maximizes the spread. Unfortunately, this optimization problem

is NP-hard (you don’t have to prove this). So instead, we will try to

approximate it.

(a) Give a polynomial-time algorithm that approximates the maximum

spread to within a factor of 2. That is, if the maximum spread

is s, then your algorithm should produce a selection of one ad

for each customer that has spread at least s/2. In designing your

algorithm, you may assume that no single customer has a value that

is significantly above the average; specifically, if v = ∑n
i=1 vi denotes

the total value of all customers, then you may assume that no single

customer has a value exceeding v/(2m).

(b) Give an example of an instance on which the algorithm you designed

in part (a) does not find an optimal solution (that is, one of maximum

spread). Say what the optimal solution is in your sample instance,

and what your algorithm finds.

8. Some friends of yours are working with a system that performs real-time

scheduling of jobs onmultiple servers, and they’ve come to you for help in

getting around an unfortunate piece of legacy code that can’t be changed.

Here’s the situation. When a batch of jobs arrives, the system allo-

cates them to servers using the simple Greedy-Balance Algorithm from

Section 11.1, which provides an approximation to within a factor of 2.

In the decade and a half since this part of the system was written, the

hardware has gotten faster to the point where, on the instances that the

system needs to deal with, your friends find that it’s generally possible

to compute an optimal solution.

The difficulty is that the people in charge of the system’s internals

won’t let them change the portion of the software that implements the

Greedy-Balance Algorithm so as to replace it with one that finds the

optimal solution. (Basically, this portion of the code has to interact with

somany other parts of the system that it’s notworth the risk of something

going wrong if it’s replaced.)

After grumbling about this for a while, your friends come up with an

alternate idea. Suppose they could write a little piece of code that takes

the description of the jobs, computes an optimal solution (since they’re

able to do this on the instances that arise in practice), and then feeds

the jobs to the Greedy-Balance Algorithm in an order that will cause it

to allocate them optimally . In other words, they’re hoping to be able to

656 Chapter 11 Approximation Algorithms

reorder the input in such a way that when Greedy-Balance encounters the

input in this order, it produces an optimal solution.

So their question to you is simply the following: Is this always possi-

ble? Their conjecture is,

For every instance of the load balancing problem from Section 11.1, there

exists an order of the jobs so that when Greedy-Balance processes the jobs in

this order, it produces an assignment of jobs to machines with the minimum

possible makespan.

Decide whether you think this conjecture is true or false, and give either

a proof or a counterexample.

9. Consider the followingmaximization version of the 3-DimensionalMatch-

ing Problem. Given disjoint sets X, Y, and Z, and given a set T ⊆ X × Y × Z

of ordered triples, a subset M ⊆ T is a 3-dimensional matching if each

element of X ∪ Y ∪ Z is contained in at most one of these triples. The

Maximum 3-Dimensional Matching Problem is to find a 3-dimensional

matching M of maximum size. (The size of the matching, as usual, is the

number of triples it contains. You may assume |X| = |Y| = |Z| if you want.)

Give a polynomial-time algorithm that finds a 3-dimensional match-

ing of size at least 1
3 times the maximum possible size.

10. Suppose you are given an n × n grid graph G, as in Figure 11.13.

Associated with each node v is a weight w(v), which is a nonnegative

integer. You may assume that the weights of all nodes are distinct. Your

Figure 11.13 A grid graph.

Exercises 657

goal is to choose an independent set S of nodes of the grid, so that the

sum of the weights of the nodes in S is as large as possible. (The sum of

the weights of the nodes in S will be called its total weight .)

Consider the following greedy algorithm for this problem.

The "heaviest-first" greedy algorithm:

Start with S equal to the empty set

While some node remains in G

Pick a node vi of maximum weight

Add vi to S

Delete vi and its neighbors from G

Endwhile

Return S

(a) Let S be the independent set returned by the “heaviest-first” greedy

algorithm, and let T be any other independent set in G. Show that, for

each node v ∈ T , either v ∈ S, or there is a node v′ ∈ S so that w(v) ≤ w(v′)
and (v, v′) is an edge of G.

(b) Show that the “heaviest-first” greedy algorithm returns an indepen-

dent set of total weight at least 1
4 times the maximum total weight of

any independent set in the grid graph G.

11. Recall that in the Knapsack Problem, we have n items, each with a weight

wi and a value vi. We also have a weight bound W, and the problem is to se-

lect a set of items S of highest possible value subject to the condition that

the total weight does not exceed W—that is,
∑

i∈S wi ≤ W. Here’s one way

to look at the approximation algorithm that we designed in this chapter.

If we are told there exists a subset O whose total weight is
∑

i∈O
wi ≤ W

and whose total value is
∑

i∈O
vi = V for some V, then our approximation

algorithm can find a set A with total weight
∑

i∈A
wi ≤ W and total value at

least
∑

i∈A
vi ≥ V/(1+ ǫ). Thus the algorithm approximates the best value,

while keeping the weights strictly under W. (Of course, returning the set

O is always a valid solution, but since the problem is NP-hard, we don’t

expect to always be able to find O itself; the approximation bound of 1+ ǫ

means that other sets A, with slightly less value, can be valid answers as

well.)

Now, as is well known, you can always pack a little bit more for a trip

just by “sitting on your suitcase”—in other words, by slightly overflowing

the allowed weight limit. This too suggests a way of formalizing the

approximation question for the Knapsack Problem, but it’s the following,

different, formalization.

658 Chapter 11 Approximation Algorithms

Suppose, as before, that you’re given n items with weights and values,

as well as parameters W and V; and you’re told that there is a subset O

whose total weight is
∑

i∈O
wi ≤ W and whose total value is

∑
i∈O

vi = V for

some V. For a given fixed ǫ > 0, design a polynomial-time algorithm that

finds a subset of items A such that
∑

i∈A
wi ≤ (1+ ǫ)W and

∑
i∈A

vi ≥ V.

In other words, you want A to achieve at least as high a total value as

the given bound V, but you’re allowed to exceed the weight limit W by a

factor of 1+ ǫ.

Example. Suppose you’re given four items, with weights and values as

follows:

(w1, v1) = (5, 3), (w2, v2) = (4, 6)

(w3, v3) = (1, 4), (w4, v4) = (6, 11)

You’re also givenW = 10 andV = 13 (since, indeed, the subset consisting of

the first three items has total weight at most 10 and has value 13). Finally,

you’re given ǫ = .1. This means you need to find (via your approximation

algorithm) a subset of weight at most (1+ .1) ∗ 10 = 11and value at least 13.

One valid solution would be the subset consisting of the first and fourth

items, with value 14 ≥ 13. (Note that this is a case where you’re able to

achieve a value strictly greater than V, since you’re allowed to slightly

overfill the knapsack.)

12. Consider the following problem. There is a set U of n nodes, which we

can think of as users (e.g., these are locations that need to access a

service, such as a Web server). You would like to place servers at multiple

locations. Suppose you are given a set S possible sites that would be

willing to act as locations for the servers. For each site s ∈ S, there is

a fee fs ≥ 0 for placing a server at that location. Your goal will be to

approximately minimize the cost while providing the service to each of

the customers. So far this is very much like the Set Cover Problem: The

places s are sets, the weight of set s is fs, and we want to select a collection

of sets that covers all users. There is one extra complication: Users u ∈ U

can be served from multiple sites, but there is an associated cost dus for

serving user u from site s. When the value dus is very high, we do not want

to serve user u from site s; and in general the service cost dus serves as an

incentive to serve customers from “nearby” servers whenever possible.

So here is the question, which we call the Facility Location Problem:

Given the sets U and S, and costs f and d, you need to select a subset A ⊆ S

at which to place servers (at a cost of
∑

s∈A fs), and assign each user u to

the active server where it is cheapest to be served, mins∈A dus. The goal

Notes and Further Reading 659

is to minimize the overall cost
∑

s∈A fs + ∑
u∈U mins∈A dus. Give an H(n)-

approximation for this problem.

(Note that if all service costs dus are 0 or infinity, then this problem

is exactly the Set Cover Problem: fs is the cost of the set named s, and dus

is 0 if node u is in set s, and infinity otherwise.)

Notes and Further Reading

The design of approximation algorithms for NP-hard problems is an active

area of research, and it is the focus of a book of surveys edited by Hochbaum

(1996) and a text by Vazirani (2001).

The greedy algorithm for load balancing and its analysis is due to Graham

(1966, 1969); in fact, he proved that when the jobs are first sorted in descending

order of size, the greedy algorithm achieves an assignment within a factor 4
3

of optimal. (In the text, we give a simpler proof for the weaker bound of 3
2 .)

Using more complicated algorithms, even stronger approximation guarantees

can be proved for this problem (Hochbaum and Shmoys 1987; Hall 1996). The

techniques used for these stronger load balancing approximation algorithms

are also closely related to the method described in the text for designing

arbitrarily good approximations for the Knapsack Problem.

The approximation algorithm for the Center Selection Problem follows the

approach of Hochbaum and Shmoys (1985) and Dyer and Frieze (1985). Other

geometric location problems of this flavor are discussed by Bern and Eppstein

(1996) and in the book of surveys edited by Drezner (1995).

The greedy algorithm for Set Cover and its analysis are due independently

to Johnson (1974), Lovász (1975), and Chvatal (1979). Further results for the

Set Cover Problem are discussed in the survey by Hochbaum (1996).

As mentioned in the text, the pricing method for designing approximation

algorithms is also referred to as the primal-dual method and can be motivated

using linear programming. This latter perspective is the subject of the survey

by Goemans and Williamson (1996). The pricing algorithm to approximate the

Weighted Vertex Cover Problem is due to Bar-Yehuda and Even (1981).

The greedy algorithm for the disjoint paths problem is due to Kleinberg and

Tardos (1995); the pricing-based approximation algorithm for the case when

multiple paths can share an edge is due to Awerbuch, Azar, and Plotkin (1993).

Algorithms have been developed for many other variants of the Disjoint Paths

Problem; see the book of surveys edited by Korte et al. (1990) for a discussion

of cases that can be solved optimally in polynomial time, and Plotkin (1995)

and Kleinberg (1996) for surveys of work on approximation.

660 Chapter 11 Approximation Algorithms

The linear programming rounding algorithm for the Weighted Vertex Cover

Problem is due to Hochbaum (1982). The rounding algorithm for Generalized

Load Balancing is due to Lenstra, Shmoys, and Tardos (1990); see the survey

by Hall (1996) for other results in this vein. As discussed in the text, these

two results illustrate a widely used method for designing approximation al-

gorithms: One sets up an integer programming formulation for the problem,

transforms it to a related (but not equivalent) linear programming problem,

and then rounds the resulting solution. Vazirani (2001) discusses many further

applications of this technique.

Local search and randomization are two other powerful techniques for

designing approximation algorithms; we discuss these connections in the next

two chapters.

One topic that we do not cover in this book is inapproximability. Just as

one can prove that a given NP-hard problem can be approximated to within

a certain factor in polynomial time, one can also sometimes establish lower

bounds, showing that if the problem could be approximated to within bet-

ter than some factor c in polynomial time, then it could be solved optimally,

thereby proving P = NP. There is a growing body of work that establishes such

limits to approximability for many NP-hard problems. In certain cases, these

positive and negative results have lined up perfectly to produce an approxima-

tion threshold, establishing for certain problems that there is a polynomial-time

approximation algorithm to within some factor c, and it is impossible to do

better unless P = NP. Some of the early results on inapproximability were not

very difficult to prove, but more recent work has introduced powerful tech-

niques that become quite intricate. This topic is covered in the survey by Arora

and Lund (1996).

Notes on the Exercises Exercises 4 and 12 are based on results of Dorit

Hochbaum. Exercise 11 is based on results of Sartaj Sahni, Oscar Ibarra, and

Chul Kim, and of Dorit Hochbaum and David Shmoys.

